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A Requirements Framework for Service-Oriented 
Modeling Techniques with Respect to Web Service 
Verification 
 

Abstract: 

Web service compositions (WS compositions) coordinate Web services of different 
enterprises. They are expected to constitute the foundation of service-oriented architectures, to 
improve business processes as well as to foster intra- and inter-organizational integration. 
Especially in inter-organizational contexts, quality of service referring to non-functional 
requirements and conformance to functional requirements are becoming vital properties. With 
WS compositions being asynchronous and distributed systems, the latter – which is also 
called correctness – can be shown best by verification. This paper examines how correctness 
has to be operationalized for WS compositions. It also examines how service-oriented 
modeling techniques should be shaped so that correctness can be shown by verification while 
WS compositions can be modeled intuitively. Correctness is analyzed from a system-theoretic 
viewpoint. Moreover, a requirements framework for formal foundations and modeling support 
is proposed. In order to show the framework’s principle applicability, one example approach 
is analyzed with respect to the corresponding requirements. 

Executive Summary: 

Conformance to functional requirements, which is also known as correctness, is a prerequisite 
of the quality of service of Web service compositions (WS compositions). This paper 
operationalizes correctness for WS compositions. It also proposes a requirements framework 
for service-oriented modeling techniques so that correctness can be shown by verification and 
WS compositions can be modeled intuitively. 

• Correctness splits into structural and behavioral correctness. The former requires service 
interfaces to match and required functionality to be available. The latter requires 
sequences of exchanged messages to conform to previously defined behavioral claims.  

• The requirements framework refers to formal foundations and modeling support. Formal 
foundations require formal languages for models of WS compositions and behavioral 
claims. Modeling support requires a process model, adequate modeling and verification 
tools as well as their integration. 

Keywords: Web service compositions, Service-oriented modeling, Formal methods. 



1 Motivation and Object of Research 
Web services and Web service compositions (WS compositions) are currently considered to 
be the most widespread possibility for implementing service-oriented architectures (Erl 2004; 
Newcomer and Lomow 2005). A (basic) Web service is a software system that exposes its 
functionality by means of a machine-processable interface consisting of several operations. It 
enables (asynchronous) message-based machine-to-machine interaction over a network 
(Booth et al. 2004). Web services are offered by internal IT departments or by external service 
providers. A WS composition is a Web service that realizes complex functionality by 
coordinating multiple (component) Web services in state-full transactions (Alonso et al. 2004, 
p. 141). Analogous to (basic) Web services, WS compositions expose their functionality via 
interfaces. In this paper, WS compositions refer to the orchestration of Web services, not to 
their choreography (Dostal et al. 2005, p. 226). 

According to a survey of the Yankee Group, WS compositions raise high expectations (Kallus 
2004). Among other things, they are expected to improve business processes and to foster the 
integration of existing e-business, CRM, SCM, and ERP initiatives. Already in 2004, more 
than 50 % of the US companies relied on Web services whereof 60 % estimated their impact 
on business-to-business integration (very) high. However, designing and running WS 
compositions is error-prone. Involved teams of software engineers and modelers usually stem 
from multiple companies and have different skills, experiences, or functional backgrounds. 
Web services are usually managed by different companies and may not have been developed 
for composition. Analogous to other distributed systems based on asynchronous 
communication, it is difficult to anticipate how WS compositions behave during execution 
and whether they conform to the functional requirements identified during requirements 
engineering. Errors, however, may violate service level agreements. This may cause losses or 
penalties and have negative impact on the reputation of the companies involved. Therefore, it 
is an important task to make sure that WS compositions conform to their functional 
requirements.  

A possibility of reliably showing conformance to functional requirements is verification. 
Here, this property is also called correctness. The idea of verification dates back to Floyd 
(1967) and Hoare (1969). In contrast to testing, for instance, where correctness can only be 
shown with respect to selected test data, verification aims at exhaustively proving correctness 
for all behavioral facets and inputs of a given program. During verification, the program is 
analyzed automatically. This requires the semantics of each program statement to be defined 
unambiguously. A program is said to be correct if its implementation (i. e. its program code or 
a corresponding formal model) is consistent with its specification of behavioral claims (i. e. 
functional requirements on the program’s behavior) (Balzert 1998, pp. 445-472). 

Despite the need for correctness, research focuses on non-functional requirements such as 
availability, scalability, capacity, etc. (Lee et al. 2003), which are already known from 
network research. Current approaches to service-oriented modeling do not (or hardly) cope 
with correctness and verification. This includes specification languages like the de facto 
standard WS-BPEL (Alves et al. 2007) – despite some attempts (e. g. Farahbod et al. 2005; 
Moser et al. 2007; Lohmann 2007; Stahl 2005) – and high-level approaches (Arjansani 2004; 
Zimmerman et al. 2004; Papazoglou and van den Heuvel 2006). Current approaches to the 
verification of Web services (WS verification) require formal models, e. g. in terms of finite 



state automata or Petri nets, which are not intuitive for conceptual modelers. Approaches to 
WS verification also postulate a variety of formal claims on WS compositions so that it is not 
clear what correctness actually means. 

Against this background, we address the following research questions: How does correctness 
have to be operationalized so that it fits the peculiarities of WS compositions? How do 
service-oriented modeling techniques have to be shaped so that correctness can be shown by 
verification and WS compositions can be modeled intuitively? 

This paper relies on a design-oriented, deductive, and argumentative research approach 
(Hevner et al. 2004, Wilde and Hess 2007). In section 2, we identify the research gap by 
compiling current approaches to WS verification and service-oriented modeling. Section 3 
proposes a definition of correctness and a requirements framework as artifacts. Section 4 aims 
at showing the framework’s basic applicability in the sense of a basic evaluation. Section 5 
briefly summarizes the findings and points out further research. 

2 State of the Art  
As for WS verification, the most frequently applied verification method is model checking 
(Clarke et al. 2001; Schneider 2004). This is because model checking is particularly suitable 
for verifying distributed systems of multiple components that interact via message exchange. 
WS compositions are such distributed systems. In contrast to other verification methods, 
model checking does not directly work on implementations in the sense of program code, but 
on formal models that focus on relevant details such as exchanged messages and their content. 
A variety of model checking-based approaches has been proposed for WS verification (van 
Breugel and Koshkina 2006). WS compositions are usually modeled by means of finite state 
automata (e. g. Fu et al. 2004), Petri nets (e. g. Martens 2005; Rozinat and van der Aalst 2008; 
Schlingloff et al. 2005), abstract state machines (e. g. Fahland and Reisig 2005; Farahbod et 
al. 2004), or process algebras (e. g. Ferrara 2004). Some approaches are also capable of 
translating XML-based models of WS compositions (see below). Behavioral claims are 
commonly formalized by means of temporal logics. This is because it enables to reason about 
the content and temporal interdependencies of exchanged messages without introducing time 
explicitly (Clarke et al. 2001, p. 4). 

In the following, we do not discuss the approaches in their entirety, but focus on how they 
deal with correctness and behavioral claims. Most approaches enable to specify behavioral 
claims that refer to concrete use cases. This is done by means of temporal logics as just 
mentioned. Some approaches additionally postulate claims that do not refer to concrete use 
cases. This is mostly done with respect to the formalism employed. The following list shows 
selected claims of the latter category: 

• Usability requires a WS composition to terminate properly (Schlingloff et al. 2005, p. 11; 
Kopp et al. 2006; Martens 2005, p. 26).  

• Syntactic compatibility requires that two Web services can be composed with respect to 
their interfaces, i. e. names of messages (Martens 2005, p. 23).  

• Semantic compatibility requires that the composition of two Web services fulfills the 
usability claim (Martens 2005, p. 26).  



• Fitness indicates up to which percentage the behavior of a WS composition conforms to 
its implementation (Rozinat and van der Aalst 2008, p. 67). 

• Appropriateness indicates whether the implementation of a WS composition adequately 
characterizes the observed behavior (Rozinat and van der Aalst 2008, p. 67). 

Beyond, there are also claims on the equivalence of WS compositions (Martens 2005, p. 27; 
Kopp et al. 2006) or on whether the communication pattern of multiple Web services could be 
simulated by synchronous message exchange (Fu et al. 2004, p. 627). As these claims refer to 
correctness at best indirectly, they are omitted for the further discussion. 

The following is noteworthy: No approach states how the claims it proposes refer to the 
overall concept of correctness. It remains unclear whether any subset of these claims would be 
sufficient, whether (or how) claims of several approaches cohere, and whether they fit the 
peculiarities of WS compositions. Some claims depend on the underlying formalism (e. g. 
usability was defined for Petri nets), others are too generic (e. g. syntactic compatibility refers 
to the names of messages, semantic compatibility is limited to termination). It is not discussed 
whether these claims can be structured. Concluding, there is a research gap with respect to 
how correctness can be operationalized so that it fits the peculiarities of WS compositions.  

When presenting an operationalization in the next section, we adopt several existing ideas in 
order to provide an incremental contribution. We adopt the idea that there are claims that refer 
to concrete use cases and others that do not. The latter category, for instance, would include 
usability as termination-related requirement. We extend syntactic compatibility from message 
names to operations and parameters. This is appropriate because correctness rather depends 
on the content of exchanged messages. We also extend semantic compatibility to possible 
(input and output) values and value ranges of parameters (see below) as well as to behavioral 
claims referring to concrete use cases. This enables to reason about sequences of exchanged 
messages and concrete behavior. We omit fitness as we consider correctness as a dichotomous 
property, that is, a WS composition is either correct or not. We also omit appropriateness as is 
takes on a contrary perspective by indicating whether an implementation characterizes 
observed behavior well. As contribution, we structure correctness by means of a system-
theoretic perspective. This is suitable as each WS composition can be characterized by 
structure and behavior. In general, claims on a WS composition’s structure (e. g. syntactic 
compatibility) do not require verification as they deal with static aspects. Behavioral claims, 
in contrast, require verification as they address dynamic aspects. This distinction enables to 
assess correctness in a less complex manner. 

As for service-oriented modeling, there are technical XML-based specification languages and 
comprehensive high-level approaches. As regards the former category, service interfaces, 
operations, and parameters are formalized by means of the Web Service Description 
Language (WSDL) (Christensen et al. 2001). Messages exchanged to invoke other services’ 
operations are commonly specified in terms of SOAP (Mitra 2003). WS compositions are 
specified by means of the Web Services Business Process Execution Language (WS-BPEL) 
(Alves et al. 2007), the Web Services Choreography Description Language (WSCDL) 
(Kavantzas et al. 2005), the Business Process Modeling Language (BPML) (Dubray 2008), or 
the Web Service Choreography Interface (WSCI) (Arkin et al. 2002) (for an overview see 
e. g. Peltz 2003). In the context of the Semantic Web, there are specification languages for 
modeling the semantics of operations and parameters, e. g. possible (input and output) values 



and value ranges. They include the Resource Description Framework (RDF) (Klyne and 
Carroll 2004) and the Web Ontology Language for Web services (OWL-S) (Martin et al. 
2004) (for an introduction see e. g. Herman 2003). As for high-level approaches, two 
elaborate examples are presented here. The service-oriented modeling and architecture 
approach proposes a framework for service identification, specification, and realization 
including role models for service providers and consumers (Arjansani 2004; Zimmerman et 
al. 2004). The service-oriented design and development methodology covers the entire service 
development lifecycle from service analysis and design to service execution and monitoring 
(Papazoglou and van den Heuvel 2006). It illustrates each phase in detail and proposes 
general design principles for SOA. It also acknowledges the importance of correctness 
(Papazoglou and van den Heuvel 2006, p. 435).  

Both high-level approaches do not elaborate on how service-oriented modeling techniques 
should be shaped so that correctness can be shown by verification while WS compositions can 
be modeled intuitively. Moreover, the specification languages from above, e. g. WS-BPEL, 
are currently not or hardly amenable to verification. Thus, there also is a research gap. As the 
high-level approaches do not provide any concrete hint on how to integrate verification, it is 
not possible to make an incremental contribution. Therefore, we examined general 
requirements of verification and conceptual modeling with respect to WS compositions and 
tried to integrate them into a requirements framework. Moreover, we used the specification 
languages in order to define the structural requirements of correctness independent of the 
formalisms for WS verification.  

In the following, we operationalize correctness based on the deliberations from above. We 
then elaborate on the requirements framework for service-oriented modeling techniques.  

3 Artifacts 

3.1 A Definition of Correctness for Web Service Compositions 
We analyze correctness from a system-theoretic perspective. This seems appropriate because 
WS compositions can be interpreted as general systems characterized by structure and 
behavior (Ferstl and Sinz 2006, p. 12). The structure of a WS composition encompasses the 
WS composition itself, the component Web services, and the message types they may 
exchange. The latter are given by the WS composition’s invocation statements and by the 
operations of the component Web services’ interfaces. The behavior of a WS composition 
represents the actual interaction among the WS composition and its component Web services. 
This includes the set of all message sequences (i. e. sequences of operation invocations). In 
accordance with this point of view, we propose that correctness splits into structural and 
behavioral correctness.  

3.1.1 Structural Correctness 
WS compositions virtually have two interfaces: a “provides interface” and a “requires 
interface” (Sommerville 2004, p. 444). The former comprises the operations by which a WS 
composition provides its functionality to other Web services. The latter includes the 
operations a WS composition requires in order to implement its functionality. Component 
Web services only have a “provides interface” because they are only known from an external 
perspective. 



Structural correctness requires that for each operation of the WS composition’s “requires” 
interface there is at least one identically named operation in a component Web services 
“provides” interface that matches with respect to number, sequence, and types of parameters. 
One possibility to check this is to compare the component Web services’ WSDL interfaces 
and the invocation statements of the WS composition’s WS-BPEL specification. If mandatory 
and optional parameters are distinguished, only mandatory parameters need to match. If the 
WS composition and the component Web services are semantically annotated, operations also 
have to match with respect to possible (input and output) parameter values or value ranges. It 
is not necessary that each operation of the component Web services’ “provides” interfaces has 
a matching operation in the WS composition’s “requires” interface. This is because 
Component Web services may of course provide more functionality than required.  

In many cases, component Web services are discovered and selected at run time. WS 
compositions may be executed although not all required operations are available. In contrast, 
state-of-the-art verification techniques require all operations to be available and models of 
WS compositions to be completely specified. Otherwise, they cannot be processed by 
verification tools and correctness cannot be analyzed. That is, if a component Web service is 
not available, one can neither reason about its own behavior nor its implications on the WS 
composition’s global behavior. To overcome this discrepancy, verification could take place at 
design time or be shifted to the point in time during execution where all component services 
have been selected. As WS compositions and/or behavioral claims may have to be changed 
after verification, one would have to accept human interaction in the latter case. 

3.1.2 Behavioral Correctness 
Behavioral correctness requires sequences of messages to conform to a set of behavioral 
claims. As messages can only be exchanged if requires and provided operations match and all 
required operations are provided, structural correctness is a prerequisite of behavioral 
correctness. In literature, behavioral claims split into safety claims and liveness claims 
(Schneider 2004, p. 14). Safety claims are claims that must not be violated, whereas liveness 
claims must always hold (Holzmann 2003, p. 74). This distinction does not sufficiently 
characterize behavioral correctness of WS compositions. What is missing is a complementary 
distinction between application-independent and application-dependent claims (see section 2). 

• Application-independent claims: Claims that cover generic issues resulting from the 
distributed and asynchronous nature of WS compositions are called application-
independent claims. They occur in many use cases and may be captured in a rather 
standardized manner. There are application-independent safety and liveness claims. 
Typical claims of the former category are mutual exclusion and deadlock freedom. Mutual 
exclusion guarantees the integrity of business data (e. g. available stock, account balances) 
by ensuring that shared variables or other critical sections are never accessed by more than 
one component Web services at the same time. Deadlock freedom is necessary for the 
termination of WS compositions. Otherwise, it would be possible that two or more 
component Web services wait for one another. A typical claim of the latter category is 
starvation freedom, which is closely related to termination and deadlock freedom. A Web 
service is said to starve if it has requested a resource (e. g. a document or a database entry) 
that is currently being held by another Web service not willing to release it. Starvation 



freedom guarantees by means of some fairness policy that each request for a resource is 
eventually satisfied.  

• Application-dependent claims: Claims that vary with a WS composition’s use case are 
called application-dependent claims. They are much more difficult to discover because 
they are only valid for some or only one use case. For this reason, it is impossible to 
enumerate them exhaustively. Some claims occur more than once and can be structured 
into catalogs of domain-specific claims. For example, there might be a catalog for 
commercial applications. A corresponding safety claim may be that customers do not have 
to pay for goods they have not ordered. A corresponding liveness claim may be that each 
customer who places an order will eventually receive an invoice. The advantage of this 
catalog is that it applies to all use cases where customers order goods or services. 
Nevertheless, some application-specific claims apply to just one scenario so that they need 
to be assessed individually.  

Tab. 1 summarizes the types and examples of behavioral claims.  

Tab. 1 Types and examples of behavioral claims 

 Safety claims Liveness claims 

Application-independent 
claims 

Mutual exclusion 
Deadlock freedom 

Starvation freedom 

Application-dependent 
Claims 

“A customer never pays for 
goods he has not ordered.” 

“A customer eventually 
receives an invoice.” 

 

3.2 A Requirements Framework for Service-Oriented Modeling 
Techniques 

Now that correctness has been examined, it is assessed what requirements service-oriented 
modeling techniques have to meet so that correctness can be shown by verification and WS 
compositions can be modeled intuitively. Therefore, we propose a requirements framework 
considering two complementary perspectives: formal foundations and modeling support.  

• Formal foundations: Verification requires models and specifications of WS compositions 
to conform to formal languages and their semantics to be defined unambiguously (Balzert 
1998, p. 467). This enables to “compute” all behavioral facets of WS compositions and to 
check which of them violate the specification. Only formally well-founded models and 
specifications are amenable to verification tools. 

• Modeling support: Whereas requirements on formal foundations are compulsory with 
respect to technical amenability to verification, modeling techniques should also consider 
the modelers’ capabilities and limitations of information processing. This is important for 
several reasons: First, in the context of business and information systems engineering as 
an inter-discipline, models aim at reducing complexity and at fostering the communication 
among modelers and model users (Ferstl and Sinz 2006, p. 123). Second, in the context of 
WS compositions, modelers from different enterprises with different skills, experiences, 
and functional backgrounds cooperate. Third, verification tools operate on a technical 



level so that their output is difficult to understand for conceptual modelers. Fourth, 
modeling behavioral claims is error-prone so that modeling tools should support modelers 
as good as possible. 

Tab. 2 shows the requirements framework for service-oriented modeling techniques. In the 
following, each requirement will be presented. The formalization of models of WS 
compositions requires formal syntax and formal semantics. 

• Formal syntax: The syntax of a modeling language encompasses elements as well as rules 
that prescribe how to combine elements. To cover the behavioral facets of WS 
compositions, elements for manipulating the conversational state (e. g. assignment of 
variables), message exchange (e. g. synchronous and asynchronous send / receive), and 
control flow (e. g. conditions, iterations, concurrency) are necessary. Syntax is formal if it 
is specified in terms of non-prosaic meta models or mathematic models.  

• Formal semantics: Semantics builds upon syntax and deals with the meaning of elements. 
The semantics of a WS composition represents its behavior resulting from the interplay of 
its elements. It should deal with issues of distributed and asynchronous systems such as 
concurrency and non-determinism. Most modeling languages in the field of business and 
information systems engineering provide formal syntax, only few provide formal 
semantics.  

The formalization of specifications requires a formal language for behavioral claims, e. g. 
temporal logics as mentioned above. With models and specifications serving as input for the 
same verification tool, it is important that this formalism complies with the modeling 
language employed for describing the semantics.  

Tab. 2 Requirements framework for service-oriented modeling techniques 

Formal Foundations Modeling Support 
• Formalization of models 

• Formal syntax 
• Formal semantics 
 

• Formalization of specifications 
 

• Process model 
 
 
 
• Tool support 

• Reduction of complexity 
• Visualization of behavior 
• Integrated modeling of WS 

compositions and specifications  
• Constructive feedback  

 

Modeling support requires a process model that guides the modeler through the process of 
modeling and verifying WS compositions. In particular, the process model should include the 
modeling of specifications and their harmonization with models of WS compositions. It 
should contain a “loop” from verification back to the modeling of models and specifications 
because models and specifications may need to be modified several times after verification. 

Beyond, modeling techniques should provide modeling and verification tools that fulfill the 
following requirements: 



• Reduction of complexity: As models of WS compositions typically refer to multiple 
business partners and represent complex behavior, they easily overstrain the modelers’ 
capacity of information processing. Modeling tools should provide graphical means for 
reducing complexity. Especially the interfaces of WS compositions enable modelers to 
switch between internal and external perspectives and to focus on a particular section of a 
model. 

• Visualization of behavior: Behavior is often visualized in a static manner. That is, carriers 
of behavior (e. g. activities, functions, tasks) are identified and related according to their 
temporal or behavioral logic. This does not correspond to human imagination. Modeling 
tools should be able to simulate the execution of WS compositions. Modelers should be 
able to chose among different execution possibilities and get an intuitive awareness of 
possible errors and bottlenecks.  

• Integrated modeling of WS compositions and specifications: Models and specifications of 
WS compositions cohere closely as they represent actual and expected behavior 
respectively. Additionally, the formalization of behavioral claims is error-prone and needs 
to be harmonized with the peculiarities of concrete representations of WS compositions. 
Modeling tools should enable the integrated modeling of WS compositions and 
specifications. 

• Constructive feedback: If behavioral claims are violated, the reasons may not be 
immediately obvious. This is for two reasons: First, models and/or specifications may 
contain errors. Second, errors are difficult to reconstruct in a distributed environment. 
Verification tools should provide modelers with constructive feedback on where and 
under what circumstances behavioral claims are violated. As this feedback typically is 
highly technical, modeling tools should furthermore be able to represent this feedback in a 
way understandable for modelers.  

We hypothesize that service-oriented modeling techniques that meet these requirements 
enable to show correctness by verification and to model WS compositions intuitively. 

4 Basic Evaluation of the Requirements Framework 
In order to provide a basic evaluation, we will now analyze whether the requirements 
framework is principally applicable. In the following, we present a selected approach, analyze 
it with respect to the requirements, and assess whether this leads to reasonable findings. The 
approach is that of Fu et al. (2004; 2004a; 2005; 2006). It has been chosen because it is an 
elaborate framework for analyzing, designing, and verifying WS compositions (Fu et al. 2004, 
p. 622), has already been applied to WS-BPEL processes, relies on the state-of-the-art model 
checker SPIN (Holzmann 2003), and has been published in several international journals and 
conferences. In order to be more illustrative, we refer to a widely known example from the 
previous WS-BPEL version (Andrews et al. 2003).  

The example is as follows: A bank intends to acquire more business customers (BIZ). A 
survey disclosed that business customers complain about administrative overhead when 
applying for short-term loans of moderate value. The board has decided to improve the 
process: Future loan applications will be classified by amount and risk. The latter will be 
assessed by an external association of experts (ASS). Only critical applications, i. e. those 



with an amount higher than or equal to 10,000 Euros or with high risk, will be examined by 
in-house loan approvers (APP). Business customers should apply via the Internet. As both the 
external experts and the internal loan approvers offer their functionality by means of Web 
services, the additional functionality will be implemented by means of a WS composition. 
Thereby, the bank unites its loan approval authority and external risk assessment competences 
in a single loan service composition (LNS). The bank is interested in that the loan service 
composition conforms to the following two application-dependent functional requirements 
(behavioral claims): First, loan applications with a high amount must be investigated in detail 
because, according to Basel II, each loan has to be guaranteed with a risk-dependent amount 
of equity. Second, in order to satisfy its customers’ needs, each loan application of less than 
10,000 Euros and low risk should be granted. 

Technically speaking, the WS composition (LNS) coordinates the functionality of two Web 
services (APP and ASS), and is used by a third Web service (BIZ). Three message types are 
necessary: request messages (req) that contain the requested amount of money (amount), 
approval messages (app) that contain the bank’s decision (result), and risk assessment 
messages (ass) that contain the risk classification (risk). 

In the approach of Fu et al., WS compositions are modeled by means of guarded finite state 
automata (GFSA). Informally speaking, finite state automata consist of states and transitions. 
States store information about the past. Transitions convey automata from one state to another 
upon external stimuli, e. g. sent or received messages. In order to deal with the content of 
messages, send-transitions are annotated with guards. Analogous to production rules, each 
guard consists of a condition part and an action part. The former specifies the transition’s 
precondition. The latter specifies the content of the message being sent. Guards are formalized 
by means of XPath (Clark and DeRose 1999). Receive-transitions are not guarded because the 
content of received messages cannot be controlled. 

Fig. 1 shows how the example can be modeled by means of GFSA. We use the standard 
notation for automata. States are modeled as circles, transitions as directed edges. Final states 
are modeled as two concentric circles, initial states as circles with edges that point to them 
from “nowhere”. Each transition has two annotations. The first annotation indicates which 
message is currently being sent (!) to or received (?) from which automaton. We use indexes 
to distinguish several message instances of the same type (e. g. req1, req3). The second 
annotation (in squared brackets) specifies the guard. We use apostrophes to characterize that 
messages are forwarded (req3’ = req1) or new values are assigned to variables (e. g. app1’.risk 
= “low”). For each WS composition and Web service, there is an automaton. Let us, for 
instance, consider the risk assessor’s automaton (ASS). In its initial state, the automaton is 
waiting for a request message (req3) forwarded by the loan service composition 
(?req3 LNS). After that, the assessors’ risk classification is returned to the loan service 
composition (LNS) via a risk assessment message (ass1) (!ass1 LNS). As the result can be 
“high” or “low”, the corresponding transition indicates both possibilities. As ass1 can always 
be sent, the guard condition is true.  



 

Fig. 1 The example scenario modeled with guarded finite state automata (GFSA) 

Behavioral claims are formalized by means of Linear Time Temporal Logic (LTL), which 
counts among temporal logics (see section 2). LTL extends propositional logic by temporal 
operators. These indicate how propositional expressions (e. g. specific variable assignments) 
cohere in time (Holzmann 2003, p. 135). Two exemplary temporal operators – which will be 
useful below – are globally (G) and eventually (F). The former requires that the propositional 
expression to which it refers remains true throughout the run of the automata (i. e. the 
execution of the WS composition). The latter requires that the propositional expression to 
which it refers becomes true at least once during the run of the automata. As each LTL 
formula can be transformed into a GFSA (Vardi and Wolper 1985, p. 332), it is useful to use 
both approaches together.  

Let us, for instance, formalize the second behavioral claim from above. It requires req1 to 
contain an amount of less than 10,000 Euros (req1.amount < 10,000), ass1 to indicate “low” 
risk (ass1.risk = “low”), and app2 to indicate acceptance (app2.result = “yes”). Temporally 
speaking, the claim must hold throughout the entire execution. Thus, it must be globally (G) 
true. The fact that req1 and ass1 lead to app2 is modeled as implication (→). Although it is not 
known when exactly app2 is returned, it must eventually (F) be returned. Together, these 
considerations result in the following LTL formula: G(req1.amount < 10,000 ∧ ass1.risk = 
“low” → F(app2.result = “yes”)). This formula can be translated into an automaton and serve 
– together with the automata from above – as input for the model checking tool SPIN, which 
analyzes whether the claims holds or not. 

How does the approach of Fu et al. conform to the requirements framework from above? With 
respect to formal foundations, GFSA provide formal syntax and semantics that cover the 
behavioral facets of WS compositions. LTL enables to formalize both application-
independent and application-independent behavioral claims. It also complies with GFSA. As 
for modeling support, the approach provides a verification-centered process model that is 



implemented by the proprietary tool WSAT (Web Service Analysis Tool) (Fu et al. 2004a). 
This tool, however, does not enable to model WS compositions and specifications, neither 
separately nor jointly. Both must be modeled by hand. Modelers have to cope with the 
complexity on their own. The employed model checking tool SPIN provides constructive 
feedback. This feedback, however, is presented in a technical way and is only hardly suitable 
for conceptual modelers. Summing up, according the requirements framework, the approach 
could be improved in the following ways: First, the tool should enable to model behavioral 
claims together with WS compositions (ideally in a graphical manner). Second, this tool 
should be integrated with the verification tool so that the feedback of the verification process 
can be integrated with the representation of WS compositions. 

It may be stated that the analysis leads to reasonable results. Each requirement could be 
assessed. It could be pointed out how the approach of Fu et al. can be improved. This 
corroborates our hypothesis from above – at least basically and in the sense of principle 
applicability.  

5 Summary and Further Research 
We addressed the research gap with respect to how correctness can be operationalized for WS 
compositions and how service-oriented modeling techniques should be shaped so that 
correctness can be shown by verification and WS compositions can be modeled intuitively. 
We propose that correctness splits into structural and behavioral correctness. The former 
requires the interfaces of WS compositions and component Web services to match with 
respect to operations and parameters. The latter requires the behavior of WS compositions to 
conform to specifications of application-independent and application-dependent behavioral 
claims. The proposed requirements framework covers the perspectives “formal foundations” 
and “modeling support”. The first perspective requires formal syntax and semantics for 
models of WS compositions and a compatible formalism for behavioral claims. The second 
perspective requires a process model as well as modeling tools that reduce modeling 
complexity, visualize the behavior of WS compositions, integrate models of compositions and 
specifications, and integrate the feedback of verification tools. The requirements framework 
has been basically evaluated by analyzing an example approach. 

The results will be subject to the following research: 

1. The framework comprises requirements on a conceptual level. It has only been assessed 
for one example approach how it could be improved, i. e. refined or extended, in order to 
meet the requirements. This is where further research in the sense of a comprehensive 
survey would be useful.  

2. The requirements framework focuses on formal foundations and modeling support. It does 
not provide an economic perspective on verification. Showing correctness leads to 
overhead. This is because specifications have to be created, models have to be verified, 
and specifications and/or models may have to be modified repeatedly. However, for many 
use cases it cannot be stated in advance whether the utility realized by preventing 
erroneous WS compositions justifies this overhead. This economic trade-off constitutes an 
interesting field of further research.  
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