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Abstract 

Renewable energy integration is accompanied by highly volatile energy generation, which urges energy 
suppliers to use costly countermeasures to prevent energy imbalances, grid instabilities and power 
outages. Therefore, using demand-side approaches to shift flexible demand over time is a promising 
opportunity. In the case of electric vehicles, research papers mostly discuss vehicle drivers’ individual 
charging strategies based upon pricing information. The objective of this paper is to quantify the 
aggregate economic benefit of an advanced metering approach wherein electric vehicle drivers simply 
provide information about the start of the next trip to the energy supplier, who can then optimize the 
charging strategy for all drivers based on this information. By using a quantitative model and a multi-
agent simulation for evaluation, we analyze original data from Germany to conclude that advanced 
metering can enable significant savings. Finally, we present a pricing scheme that would incentivize the 
drivers to provide truthful information. 
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Introduction  

Climate change and energy security are considered to be among the most pressing issues the world currently 
faces (Traut et al. 2012). Governments are imposing obligations on industry companies to increase energy 
efficiency and reduce emissions in order to achieve ambitious climate and energy goals. The energy 
turnaround, i.e. the substitution of conventional energies, like coal and nuclear, by renewable energy 
sources, like wind and solar, will lead to a “substantial transformation of electricity systems” (Römer et al. 
2012). Germany is at the forefront of the development of energy systems, and plans to shut down all nuclear 
power plants before 2022 (Economist 2011). However, as wind and sunlight fluctuate over time, energy 
generation with those sources can be highly volatile (Subramanian et al. 2012). Since the energy demand is 
also volatile, energy suppliers increasingly face the challenge of grid imbalances, which is, surplus of energy 
generation or demand (dena 2012). The exact balance between generation and demand is a complex 
challenge in and of itself (Mattern et al. 2010), and will, according to Christian (2010), become “one of the 
most critical issues in the transition to less carbon-emitting energy supply systems within the next decades”. 
Nowadays, energy suppliers match energy generation and demand by buying operating reserve and turning 
large generators on and off. As a consequence, efficiency loss and high opportunity cost lead to payouts for 
the energy supplier and, eventually, higher energy prices for customers. Moreover, energy storage facilities 
(ESFs) are used, which are extremely costly and (mostly) too sluggish to absorb energy surplus, especially 
surplus occurring on the short-term. The issue of efficient and affordable ESFs is considered one of the 
biggest economic challenges of the energy turnaround. Since the proportion of the renewables increases, 
the efforts to compensate grid imbalances by adjusting the energy generation ascends. As a result, modern 
approaches to demand-side management are being developed, with a focus on shifting energy demand to 
match fluctuating generation (Strbac 2008). According to Flath et al. (2012a), demand-side management 
approaches “can reduce investments in the grid and the cost of generation (Strbac 2008) while customers 
can expect savings in their electricity bill (Albadi and El-Saadany 2008)”.  

Electric vehicles (EV) can potentially serve as compensatory energy storage units, which may help to remedy 
the problem. Since the parking times of EVs are often longer than the actual charging times, the charging 
of EVs is temporally flexible. EV charging can therefore be optimized in order to compensate grid 
imbalances. From an information management perspective, the problem at hand stems from asymmetric 
information: energy suppliers have no information about the time and duration that an EV is available for 
charging. When combined with conflicting interests, asymmetric information “can lead to suboptimal 
allocation of resources” (Copeland et al. 2005) and welfare losses. Existing research articles develop 
charging strategies mostly on the basis of energy price information, (e.g. Sundström and Binding (2010), 
Römer et al. (2012),  Lopes et al. (2009), Schuller et al. (2012)), and assume that the customers’ charging 
strategies will respond to price signals. However, given the comparatively low cost of the power necessary 
to fully charge an electric vehicle, (approx. 5 € in today’s prices) it is unlikely that customers will be willing 
to bother with complex pricing mechanisms that yield results which cannot be known in advance.  

To this account, information and communications technology (ICT) has already developed an infrastructure 
which enables EV drivers to dispose of asymmetric information. Through the use of an advanced meter, the 
energy supplier receives information about the actual driving behavior from the driver. For example, the 
Chevrolet Volt already comes with a mobile app called Onstar Remotelink, which allows EV drivers to 
specify charging times and charging modes (General Motors 2011), such as grid-friendly charging. The 
energy supplier can then determine a charging schedule for each EV, allowing the energy supplier to 
leverage the flexibility of energy demand (Goebel 2012). Hence, the signaling effect of information exchange 
can counteract asymmetric information and welfare loss.  

Therefore the research question of this paper is defined as follows: How large is the aggregated economic 
benefit of an advanced metering approach where EV drivers provide information about the start of the next 
trip to the energy supplier? To investigate this research question, we implemented a simulation based 
approach for the quantification of the benefits of a smart charging strategy. Moreover, we present a pricing 
scheme that incentivizes drivers to provide truthful information to the supplier. We will show that advanced 
metering is able to counteract the welfare loss that occurs as a result of asymmetric information. Therefore, 
our model simplifies the energy supply side.  In other words, we do not differentiate between energy supply 
and grid operators, do not assume the perspective of any one specific energy supplier, and do not model 
market competition or energy trading opportunities. This is reasonable, since energy trading does not solve 
the challenge of surplus of energy generation or demand, but rather shifts it to a higher level: selling surplus 
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energy might solve the problem for an individual energy supplier, but on a national or even international 
level energy must still be stored. Moreover, transporting energy over large distances (e.g., for exports) leads 
to energy loss and should therefore also be avoided. Hence, from an aggregate economic perspective, a 
market view is not necessary, since the energy market only serves to incentivize and distribute the benefits 
that we have identified. We thus claim to determine the aggregate economic benefit of information 
exchange by means of an overall hypothetical amount of savings for the value of information in EV charging. 

In the next section, we give an overview of existing literature related to our work. Section 3 offers an 
explanation regarding the focused challenge of renewable energy integration. Section 4 introduces the 
model, and section 5 presents the data we used for our analysis. Afterwards, we discuss a possible pricing 
scheme to leverage the economic potential of ICT-based information exchange. Subsequently, conclusions 
from the model and the simulation are drawn and summed up. We close with a brief summary, discuss 
limitations of the article and present an outlook on future research.  

Related work 

Market penetration of EV faces several obstacles, including long charging times and shorter driving range 
of EVs, as well as skepticism among potential users (Tate et al. 2008). Thus, business models to counteract 
these obstacles are being developed. Kley et al. (2011) present several business models for electric mobility, 
and provide decision support for various stakeholders. Among these, a promising approach is using EVs to 
shift the load into off-peak periods, which has already been discussed since 1983 (Heydt 1983). According 
to Kempton and Tomić (2005b), vehicles are parked, on average, for 96% of the day. Existing research 
papers propose load-shifting with specific charging strategies, such as a decentralized approach (Qian et al. 
2011), coordination based on local grid parameters (Lopes et al. 2010), or a central optimal planning 
authority (Clement et al. 2009;  Flath et al. 2012b). Traut et al. (2012) propose an optimization model to 
minimize annual life-cycle costs for an EV fleet. Energy and emission costs are considered, as well as several 
engine and motor types, battery size, battery swing windows, the allocation of vehicles, and the allocation 
of home and workplace charging stations. Callaway and Hiskens (2011) explore conceptual requirements to 
develop and evaluate load schemes. Gottwalt et al. (2011) investigate the impact of smart appliances and 
variable prices under several tariffs regarding electricity bills of customers, and compare savings to required 
equipment. Lopes et al. (2009) and Dietz et al. (2011) assess several charging strategies for EVs in order to 
match energy generation and demand. Flath et al. (2012c) integrate a cluster analysis approach into the 
business intelligence environment to achieve a customer segment-specific energy tariff design.  

However, combining a smart meter with a communication gateway, metering infrastructure and a 
management system (advanced metering) opens up new possibilities and gives EV drivers the chance to 
participate in demand response programs (Kranz 2011). Advanced metering research is based on the idea 
that EV drivers and energy suppliers exchange more than price information, and bridge “the 
communication gap between consumers and other energy systems’ parties by means of information and 
communication technologies” (Kranz 2011). Yang et al. (2009) find that advanced metering enables more 
efficient and anticipatory coordination between power generation and demand. Kranz (2011) analyzes 
customer acceptance of advanced metering devices. The economic impact of advanced metering is 
discussed in an overview by Faruqui et al. (2010). Bitar and Low (2012) suggest a market model for 
deadline-differentiated pricing of deferrable electric power services. Under this model costumers get 
financial incentives for giving the energy supplier a time frame with a deadline for deferrable power 
services. An example for such power services could be the charging process of EVs since they are often 
longer plugged in as they need for a full charge. In this example the time frames starts when the EV is 
plugged in and the deadline is the starting time of the next trip. Bitar and Low (2012) name the earliest-
deadline-first strategy as an optimal scheduling policy for the supplier. This strategy provides customers 
with electric energy first, that communicated the earliest deadline. Furthermore Bitar and Xu (2013) show 
that the earliest-deadline-first allocation is not only an optimal scheduling policy for the energy supplier 
but can also be incentive compatible. That means all customers will truthfully provide the information of 
their specific deadlines. However, the authors do not quantify the benefit of such an allocation policy. 
Goebel (2013) proposes a comprehensive simulation-based business case analysis and shows that 
controlling charging behavior with the help of advanced metering may lead to significant cost savings. 
Schmidt and Busse (2013) use simplistic driving profiles and assume a fixed daytime for the latest end of 
charging to evaluate whether investments in smart EV charging technologies are a suitable alternative to 
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an expansion of power plant capacities. Wagner et al. (2013) conduct a comprehensive simulation and use 
data from the internal parking guidance systems of two major German cities to compute a business case for 
a cluster of parking garages as operating instances for grid regulation. Brandt et al. (2013) investigate the 
economic benefit of an IS artifact, which coordinates the charging process of an EV dependent on historical 
data of the energy generation of a residential roof-top photovoltaic panel, the domestic demand and the 
driving behavior. Thereby the authors show the capability of ICT in adjusting the energy demand to the 
volatile energy supply on a local stage.    

Nevertheless, none of these approaches perform an aggregate economic potential analysis of smart EV 
charging within a nationwide grid. Böning et al. (2010) find that the use of information exchange 
infrastructure “is more a result of regulation than of industry initiatives” (Römer et al. 2012; Böning et al. 
2010). Thus, it appears necessary to analyze the business potential of ICT-supported communication with 
advanced metering devices and incentives to facilitate widespread market penetration.  

The challenge of renewable energy integration 

Renewable energy sources generate energy from resources that are continually replenished, e.g., sunlight 
or wind. The occurrence of these natural resources is not stable but volatile, leading to fluctuating energy 
generation. Since the behavior of households, industries and other energy demanders is uncertain, 
uncertain energy generation from renewable sources, as well as uncertain quantities of energy demand 
cause imbalances in the grid. One possible measure to capture imbalances of energy generation and demand 
is the residual load, which is the difference between energy demand, and the amount of energy generated 
from renewable energy sources at any given time. It thus constitutes the non-influenceable energy 
fluctuation, given that the demand is unmanaged and renewables are not disconnected from the grid, two 
conditions which should be avoided for economic reasons. 

The residual load must be supplied with energy from conventional power plants and balanced through 
ESFs, power plants with a relatively short start-up phase, and energy imports (dena 2012). ESFs are more 
favorable to compensate short-term fluctuation, since the fuel consumption can be reduced by storing 
energy from renewables instead of switching conventional power plants on and off. Therefore the CO2-
emission and the costs for energy production can be decreased by using ESFs (Moser et al. 2014). 
Furthermore conventional power plants provide only a relatively constant load, and ESFs have an efficiency 
factor of 80%, at most (Economist 2012). Energy imports and exports may not only lead to high payouts for 
the energy supplier, but also do not solve the problem of energy storage. By proceeding further with the 
energy turnaround, the share of renewables of the whole energy supply will increase significantly. Residual 
load volatility and grid imbalances are also expected to increase drastically (see Figure 1 (dena 2012)).  

 

Figure 1. Residual loads forecast for an average German weekday in 2020 (dena 2012)  
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Consequently, it will become increasingly important for energy suppliers to decrease energy imbalances. In 
the following section, we will demonstrate how ICT can be used for demand-side management of EVs by 
means of manageable energy consumers, which are quickly available. They can be assigned to store energy 
surplus and decrease residual load volatility and, eventually, payouts for energy supplier and customers. 

Model 

In this section, we develop a generic formal model and evaluate its applicability in a multi-agent simulation. 
We consider daytime-specific driving behavior as well as season-specific traffic volume and use forecast 
data for residual loads in the year of 2020 to compare a smart charging strategy to immediate charging. In 
principle, the problem at hand could be solved with a dynamic programming model. However, a simulation 
is the more sensible approach, as the model considers many different persons involved, each with random 
parameters that are described by a variety of different distribution functions. These qualities make an 
analytical solution merely impossible.  

We consider a setting with one energy supplier 𝐸 and 𝑛 EV drivers 𝑖, where 𝑖 = 1, … , 𝑛. Generally, a more 
complex analysis under consideration of more advanced market conditions, such as trading opportunities 
or dynamic pricing mechanisms, could be performed without jeopardizing the validity of the results of this 
article. 

We consider a certain timeframe which can be divided into 𝑇 time periods, 𝑡 = 0, … , 𝑇. In each period, the 
energy provider faces a certain residual load 𝑅𝑡 measured in kW. We assume that the average residual load 

𝑅 can be delivered by conventional power plants, and is therefore irrelevant to our model. The deviation 

from the average 𝑆𝑡 = 𝑅 − 𝑅𝑡  thus describes the over (+) or undercapacity (-) of the grid that must be 
balanced through charging/discharging of ESFs, e.g., pumped storage plants. Charging and discharging 
ESFs has efficiency factors of 0 < 𝜂𝑙 < 1  and 0 < 𝜂𝑢 < 1 , respectively. Charging the ESF with an 
overcapacity of 𝑆𝑡  therefore actually only charges 𝑆𝑡 ∙ 𝜂𝑙 , and causes losses of 𝑆𝑡 ∙ (1 − 𝜂𝑙 ) , whereas 
discharging an undercapacity of 𝑆𝑡 from the ESF requires 𝑆𝑡/𝜂𝑢  to be actually withdrawn from the ESF, and 

causes losses of 𝑆𝑡 ∙ (1 −
1

𝜂𝑢 
). The total energy lost due to the inefficiency of charging and discharging the 

ESF is therefore 

L𝜂 = ∑ 𝑆𝑡 ∙ (1 − 𝜂𝑙 )

𝑇

𝑡=0
𝑆𝑡>0

+ ∑ 𝑆𝑡 ∙ (1 −
1

𝜂𝑢 

)

𝑇

𝑡=0
𝑆𝑡<0

. 

We assume opportunity cost for these energy losses of 𝑐𝑐 ∙ L𝜂, with 𝑐𝑐 describing the cost of conventional 

energy per kWh. Moreover, running ESFs causes cost. To account for this cost, we assume that discharging 
1 kWh of energy from an ESF causes cost 𝑐𝑆 (dena (2008) aggregates the cost involved with ESFs into one 
value). If energy imbalance is over a certain threshold, it is possible that the payouts necessary to store 
additional energy are higher, e.g., another pumped storage plant must be activated, or a power plant must 
be shut down. For simplification, we omit this effect - which would strengthen the results of this paper even 
further - and assume 𝑐𝑆 to be constant. The total cost 𝐶 for the energy supplier due to surplus of energy 
generation or demand during 𝑇, then, are:  

𝐶 = 𝑐𝑐 ∙ L𝜂 + ∑ 𝑆𝑡 ∙ 𝑐𝑆 =

𝑇

𝑡=0
𝑆𝑡<0

𝑐𝑐 ∙ ( ∑ 𝑆𝑡 ∙ (1 − 𝜂𝑙 )

𝑇

𝑡=0
𝑆𝑡>0

+ ∑ 𝑆𝑡 ∙ (1 −
1

𝜂𝑢 

)

𝑇

𝑡=0
𝑆𝑡<0

) + ∑ 𝑆𝑡 ∙ 𝑐𝑆

𝑇

𝑡=0
𝑆𝑡<0

 

The energy supplier aims at lowering 𝐶 in order to increase its economic profit. This can be reached by 
lowering |𝑆𝑡|. 

Because each of 𝐸’s 𝑛 customers accounts for one EV, we will treat customers and EVs synonymously. Each 
EV features a certain charging level at every point of time 𝐸𝑖,𝑡 , and a maximum charging level, 

𝐸𝑚𝑎𝑥 , measured in kWh, (we assume 𝐸𝑚𝑎𝑥 to be equal for all vehicles). EVs alternate between parking and 
driving during 𝑇. The individual durations of driving are modeled as exponentially distributed random 

variables �̃�𝑑,𝑖,𝑡 limited to the maximal range with regard to an EV’s initial charging level. The individual 
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(residual) durations for parking are denoted as 𝑑𝑝,𝑖,𝑡 (𝑡 is the period in which parking began). Therefore, we 

find that 𝑑𝑑,𝑖,𝑡 = 𝑚𝑖𝑛(�̃�𝑑,𝑖,𝑡 , 𝐸𝑖,𝑡/𝑢) , with 𝑢  denoting the EV’s energy usage per period, (assumed to be 

constant and equal for all EVs). At the end of driving in 𝑡, the charging level of an EV will thus be 𝐸𝑖,𝑡 =
𝐸𝑖,𝑡′ −  𝑑𝑑,𝑖,𝑡′ ∙ 𝑢, with 𝑡′ = 𝑡′ denoting the starting period of the previous trip. 

During parking times, an EV may be connected to a battery-charging infrastructure. The current charging 
infrastructure is not developed nationwide, e.g., the necessary grid connection can nowadays only be 
provided during half of the day in Germany (Wagner et al. 2013). In accordance with the work of Kempton 
and Tomić (2005a), we assume that EVs can be charged in 75% of all cases by 2020. Transport losses 
between different localities of energy generation and EV charging are disregarded. Each EV 𝑖 arrives at a 
charging device with a specific state of charge 𝐸𝑖,𝑡. We assume the primary concern of all EV drivers is to 
have a fully-charged EV when starting a trip, or - if parking time is not sufficient to charge the battery 
completely - the maximum charging level possible. We furthermore assume EV drivers to be indifferent 
towards the charging status until they start the next trip. The secondary concern of all EV drivers is to 
minimize the cost for charging the EV. Consequently, if there is either not enough or just the parking time 

available to fully charge the EV, (i.e., if 𝑑𝑝,𝑖,𝑡 ≤ (𝐸𝑚𝑎𝑥 − 𝐸𝑖,𝑡)/𝑣 with 𝑣 denoting the amount of energy being 

charged in 1 period), the EV will be charged immediately upon being plugged in. Otherwise, the EV may be 
charged at any time as long as it is fully charged in period 𝑡 + 𝑑𝑝,𝑖,𝑡. We do not consider load-dependent 

charging speed, but instead assume linear charging progress (Qian et al. 2011). 

As many EV drivers might prefer to maintain a certain flexibility at any time, it might be necessary to define 
a minimal amount of energy that is charged right away in any given situation, (e.g., to go to a hospital or to 
the nearest supermarket). Thus, we regard an emergency driving time 𝑑𝑑,𝑒𝑚 that an EV should always be 

able to reach. If the remaining charging level of a parking EV is not sufficient for the emergency driving 
time, it will be charged independently from the residual load until the necessary charging level for  𝑑𝑑,𝑒𝑚 

has been achieved, (i.e. charge an EV as long as 𝐸𝑖,𝑡/𝑢 <  𝑑𝑑,𝑒𝑚). 

Information exchange and its implications 

Without advanced metering, the energy supplier has no information about the parking duration 𝑑𝑝,𝑖,𝑡 , and 

is thus forced to charge each parked car immediately. Only this strategy fulfils the EV drivers’ main 
objective, which is to start again with a full battery or with the maximum possible charging level. In the 
following section, we will refer to this charging strategy as “immediate charging.” We assume that with ICT-
based information exchange, the energy supplier will not only know the current charging level 𝐸𝑖,𝑡 , but also 

the parking time 𝑑𝑝,𝑖,𝑡 truthfully provided by the EV drivers. It is possible that the actual parking time differs 

from the parking time submitted to the energy supplier. In an effort to simplify, we neglect anything other 
than planned trips, though other situations might be a valuable subject for future research. With this 

information, the energy supplier is able to compare the necessary charging time (𝐸𝑚𝑎𝑥 − 𝐸𝑖,𝑡)/𝑣 with the 

parking time available in order to schedule an individual charging strategy for each EV. While more 
information might allow for more sophisticated scheduling strategies, we describe a very simple smart 
strategy using this information, as well as its merits, in the following section. 

The difference 𝑏𝑖,𝑡 = 𝑑𝑝,𝑖,𝑡 − (𝐸𝑚𝑎𝑥 − 𝐸𝑖,𝑡)/𝑣 can be interpreted as the buffer a parked EV 𝑖 has for being 

charged in period 𝑡 . As long as 𝑏𝑖,𝑡 > 0, it is not necessary to charge the EV. As time goes by without 

charging, (𝐸𝑚𝑎𝑥 − 𝐸𝑖,𝑡)/𝑣 will stay constant while 𝑑𝑝,𝑖,𝑡 will diminish. Since Bitar and Low (2012) already 

presented earliest-deadline-first as an optimal scheduling policy for the energy supplier, we want to apply 
this policy within the following greedy algorithm: 

1. Identify all EVs that are ready for charging, i.e., they are parking with  

(𝐸𝑚𝑎𝑥 − 𝐸𝑖,𝑡) > 0. 

2. Charge all EVs with 𝐸𝑖,𝑡/𝑢 < 𝑑𝑑,𝑒𝑚. 

3. Charge all EVs with 𝑏𝑖,𝑡 ≤ 0. 

4. As long as 𝑆𝑡 > 0, charge the vehicles with the lowest buffers 𝑏𝑖,𝑡 first (the charged energy is then 

subtracted from 𝑆𝑡). 
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This smart-charging algorithm ensures that as few EVs as possible are charged when 𝑆𝑡 ≤ 0, and that as 
many EVs as possible are charged when 𝑆𝑡 > 0. Compared to the immediate-charging algorithm, the smart-
charging algorithm minimizes the average |𝑆𝑡|,  and thus reduces the charging/discharging of ESFs. 
Furthermore, it preserves the highest possible flexibility in terms of the total buffer available, as EVs with 
a low buffer are charged first and EVs with a high buffer stay on the list for later charging. Although a greedy 
algorithm is only a heuristic approach, it delivers an optimal solution under the given assumptions. It 
should be mentioned that this would not be the case for an increasing 𝑐𝑆 with an increasing 𝑆𝑡, as it might 
be sensible to postpone charging in order to avoid even higher peaks of 𝑆𝑡. However, since this element 
would make the model much more complex and would only increase the possible economic benefits of 
smart charging, we refrain, for now, from integrating this into our model. 

To evaluate the economic benefit of the information needed to implement the algorithm, we must compare 
the payouts of the immediate-charging strategy with those of the smart-charging strategy. Hevner et al. 
(2004) name simulation as a legitimate means to evaluate design-oriented research. Therefore, we built a 
multi-agent simulation which is based upon real-world data to demonstrate that using advanced metering 
technology to transfer trip information will yield better results in practice than immediate charging will. 
The simulation was built in Java using the MASON library, which is a multi-agent simulation library. 
Among other things this library contains a sophisticated random number generator for various density 
functions.  

Data 

For our simulation, we use forecast data for residual loads of an average weekday in winter, as well as an 
average summer Saturday in Germany in the year of 2020 with positive and negative residual loads (dena 
2012). In accordance with the German plans for EV integration (Bundesregierung 2009), we assume 1 
million EVs on German streets by 2020, but performed also a simulation run with 200,000, and one with 
5 million EVs to analyse validity and sensitivity of our results. We use season-specific traffic volumes 
according to BMVBS (2010) to model different driving behaviour for winter and summer. In order to take 
different driving profiles over day into account and to picture daytime-specific EV usage, we use real world 
data of BMVBS (2010). Thus, each EV is assigned a trip starting probability during each time of the day, 
again for both a winter weekday and a summer Saturday. We consider all EVs to be of the same kind, and 
calculate with a battery capacity of 𝐸𝑚𝑎𝑥=22 kWh and an average of 𝑢=0.154 kWh/min energy consumption 
for each EV based on the data of de la Fuente Layos (2007). The batteries of all EVs can be charged by 
charging devices at equal charging speed, for which we use 𝑣=0.0969 kWh/min based on Qian et al. (2011). 

We calculate with an average driving time of �̃�𝑑,𝑖,𝑡 =13 minutes (derived from de la Fuente Layos 2007) 

which is varied exponentially. We use 𝜂𝑙 =0.86 as the ESF charging efficiency factor, and 𝜂𝑢 =0.88 as the 
ESF discharging efficiency factor (dena 2008). Furthermore, we calculate with 𝑐𝑆 =0.1065 € for ESF costs, 
and 𝑐𝑐 =0.116 € for opportunity costs for energy losses per kWh (dena 2008). For the emergency driving 
time we also use two values to investigate the effect of this variable. For that, we run the simulation for an 
emergency driving time of 10 minutes and for an emergency driving time of 20 minutes. As mentioned 
before, we take into account that charging infrastructure, is available only in 75% of all cases where a driver 
parks an EV to start a charging process. The probability of charging infrastructure availability as well as the 
trip starting time of the EVs and the exponential distributed driving time constitute the stochastic 
component of the simulation. Table 1 gives an overview of all input values and literature sources.  
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 Table 1. Data input for the simulation 

Variable Description Value Distribution Source 

𝑛 Number of EVs 

1,000,000 

(200,000; 

5,000,000) 

- 
Bundesregierung 

(2009) 

𝑇 Runtime 

2 days  

(1 winter,  

1 summer) 

- - 

𝑅𝑡 

Residual load for a weekday in 

winter 
- 

Acc. to dena  

(2012) 
dena (2012) 

Residual load for a day of a 

summer weekend 
- 

Acc. to dena  

(2012) 
dena (2012) 

- 

Trip starting times for a 

weekday in winter 
- 

Acc. to 

BMVBS 

(2010) 

BMVBS (2010) 

Trip starting times for a day of 

a summer weekend 
- 

Acc. to 

BMVBS 

(2010) 

BMVBS (2010) 

�̃�𝑑,𝑖,𝑡 Driving time 13 min exponential 
Derived from de la 

Fuente Layos (2007) 

𝑑𝑑,𝑒𝑚 Emergency driving time 10 min (20 min) - - 

- 
Traffic volume summer - - BMVBS (2010) 

Traffic volume winter - - BMVBS (2010) 

𝑣 EV charging speed 0.0969 kWh/min - 
Derived from Qian et 

al. (2011) 

𝐸𝑚𝑎𝑥 EV battery capacity 22 kWh - - 

𝑢 Energy consumption per min 0.154 kWh/min - 
de la Fuente Layos 

(2007) 

𝜂𝑙  ESF charging efficiency 0.86 - dena (2008) 

𝜂𝑢  ESF discharging efficiency 0.88 - dena (2008) 

𝑐𝑆 
Costs for discharging 1 kWh 

from ESF 
0.1065 €/kWh - dena (2008) 

𝑐𝑐 
Opportunity costs for energy 

losses per kWh 
0.116 €/kWh - dena (2008) 

- 
Probability of charging 

infrastructure availability 
75% - 

Derived from 

Kempton and Tomić 

(2005a) 
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Simulation results 

Before the actual simulation starts, there are the model iterations for two days conducted to get realistic 
initial charging levels for all EVs. In the following we will illustrate the results of the simulation with 1 
million EVs and an emergency driving time of 10 minutes. As we want to get representative results, we run 
the simulation twice, first with the residual loads and the trip starting times of an average Saturday in 
summer and second for the specific parameter values of an average Tuesday in winter. The values of the 
remaining parameters can be seen in table 1. 

With the immediate charging strategy, the EVs are charged as long as they are plugged in and not fully 
charged. This has the consequence, that EV charging is conducted independently from grid over- or 
undercapacities. Grid undercapacity in particular is neither compensated nor counteracted by reduced EV 
charging. Figure 2 shows the numbers of EV charging and the grid imbalances over the period of one 
average Saturday in summer and an average Tuesday in winter of 2020. 

 

Figure 2. Immediate charge 

 
As illustrated in Figure 3, an information exchange-based smart charging strategy produces an unsteady 
charging profile, with high demand where overcapacity is available and low demand in times of 
undercapacity. In periods of undercapacity, only the plugged in EVs are being charged that feature no or a 
negative buffer or that need emergency charging. In periods of overcapacity, all plugged in EVs are being 
charged that feature a charging level below maximum. As can be seen from Figure 3, this demand shift is 
even able to completely balance the grid between 12:25pm and 01:10pm during an average winter Tuesday 
and between 03:15am and 04:00am during an average day of a summer weekend in 2020. 
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Figure 3. Information exchange based smart charging 

 
Figure 4 presents the volatility reduction as the absolute difference between the grid imbalances when 
applying the smart and the immediate charging strategy.  

 

Figure 4. Grid imbalance reduction 

 
To compare the monetary effects of immediate and smart charging, we need to compare the necessary 
balancing costs through ESFs for both scenarios. The total balancing costs are compounded of the variable 
costs of ESFs and the costs due to ESF efficiency losses. We compare EVs’ state of charging at the beginning 
and at the end of the considered periods, and remove the possible bias (EV charging loss) from the economic 
potential calculation. Charging loss is calculated as the monetarized difference between the initial charging 
level (at midnight) and the charging level at the end of the simulation for all EVs. Table 2 describes the 
outcomes for the two charging strategies.  
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Table 2: Comparison of immediate and smart charging (in million €) 

 Strategy ESF cost ESF efficiency loss EV charging loss Total cost 𝑪 

winter 
immediate 13.605 5.098 0.000 18.702 

smart 13.336 5.001 0.001 18.338 

summer 
immediate 10.571 3.976 0.000 14.548 

smart 10.456 3.935 0.001 14.392 

 
With respect to the model assumptions, our simulation results in a significant amount of savings - 
approximately 364,000 € for the considered day in winter, and 156,000 € for the day in summer. As can 
been seen from Table 2, the charging loss is negligible. These outcomes are calculated as the mean of the 
results of 50 simulation runs. In table 3 there are several statistical measures summarized.  

Table 3: Statistical measures of the total cost 𝑪 for 50 simulation runs (in million €) 

 Strategy Minimum Median Maximum Mean 
Standard 

deviation 

winter 
immediate 18.6998 18.7014 18.7034 18.7016 0.0008198 

smart 18.3355 18.3384 18.3409 18.3382 0.0011795 

summer 
immediate 14.5458 14.5475 14.5487 14.5475 0.0006001 

smart 14.3910 14.3917 14.3927 14.3918 0.0004164 

 
The standard deviation of the results is very small. With that small standard deviation and the fact that a 
complete simulation run including both charging strategies for a day in winter as well as for a day in summer 
needs about one hour, we only conducted 50 simulation runs with the described input factors.  

With a higher emergency driving time, the savings get a bit smaller. For an emergency driving time of 20 
minutes the simulation calculates savings at a height of approximately 358,000 € for an average weekday 
in winter and 154,000 € for the day in summer. This is because a higher emergency driving time lowers the 
‘flexible’ battery capacity. Since having 1,000,000 EVs on German streets by 2020 is currently a political 
objective, while other scenarios can become also reality, we conducted a short sensitivity analysis with 
200,000 cars and 5 million cars, through which we found savings of approximately 71,000 € in winter 

(31,000 € in  summer) and 1,728,000 € in winter (833,000 € in summer), respectively.  

Primarily the energy provider earns the benefits from the smart charging strategy in terms of the reduction 
of the ESF usage and as a result a decrease of costs. The actual amount to be saved depends, however, on 
the drivers and their willingness to provide the necessary trip information to the energy supplier. It is thus 
necessary to develop a well-designed incentive system with regard to the revealed economic potential. 
Therefore the energy provider could use these savings to incentivize the drivers to disclose this information 
(Bitar and Low 2012). For 1 million cars, achievable savings are an average of 0.364 € per car (0.156€ in 
summer), or 7.3% (3.1% in summer) of the approximately 5 € average cost for a complete battery charge of 
an EV with today’s prices. Keeping in mind that not all cars are completely charged in one day, and that 
some drivers will earn higher rebates due to longer parking times while others will earn lower or no rebates 
due to frequent usage of the car, this amount should be a good basis for incentivizing drivers. For 200,000 
cars and 5 million cars, the amount should be equally sufficient for EV drivers to reveal their driving 
schedule.  

Besides the economic potential, a smart charging strategy bears also an ecological benefit. ESFs do not only 
need much space and resources to be built. Moreover the usage of ESFs is associated with efficiency losses. 
By applying the smart charging strategy the energy demand is shifted and so the amount of energy being 
stored declines. In our simulation the reduction of the usage of ESFs by the smart charging strategy 
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decreases the efficiency losses by approximately 179 kWh for the day in summer and 460 kWh for the day 
in winter within a scenario with 1 million EVs. These results were also approved by scenarios with 200,000 
EVs and 5 million EVs.  

However, the costs of implementing smart charging processes have to be born - advanced meters, as well 
as smart charging stations, would have to be installed at homes, workplaces, and also in public zones. Thus, 
we will discuss a possible scheme that might offer the necessary information exchange incentives to EV 
drivers in the following section. 

A pricing scheme for smart EV charging 

As mentioned before, EV drivers considered in our model follow two objectives: (1) to reduce their energy 
cost and (2) to have their car fully charged for the next trip. We assume that financial incentivisation of 
information exchange is conducted by energy price deduction.  

Due to flexibility, each EV driver will prefer the car to be charged as quickly as possible. However, EV drivers 
will not be willing to pay for an earlier charge if they do not plan to use the EV. Consequently, EV drivers 
cannot be incentivized by an energy price deduction to disclose their parking time unless this price 
deduction depends on the actual duration of parking 𝑑𝑝,𝑖,𝑡. For example, EV drivers might exploit a constant 

energy price deduction by submitting information about a much earlier starting time of the next trip than 
what is actually planned. Thus, lower energy prices for longer parking times will incentivize EV drivers to 
disclose the actual starting time of their next trip. Therefore, a meaningful price function decreases in 
response to the parking time 𝑑𝑝,𝑖,𝑡 , and thus rewards longer parking times with a lower energy price. 

From the energy supplier’s perspective, we can furthermore deduct the following requirement for a pricing 
function: The price’s upper bound �̂� corresponds to the driver’s regular energy tariff. If the EV is required 
to be charged immediately (𝑏𝑖,𝑡 ≤ 0), i.e., no demand-shifting benefits can be realized, there is no reason to 
treat it differently from other power-consuming devices. 

All in all, a meaningful price function 𝑝  depends on the parking duration 𝑑𝑝,𝑖,𝑡 , is constant at �̂�  until 

(𝐸𝑚𝑎𝑥 − 𝐸𝑖,𝑡)/𝑣, and is then monotonically decreasing. Exemplary function curves, which depict possible 

price functions, are illustrated in Figure 5. 

 

Figure 5: Possible price functions for information exchange-
based EV charging 

 
Determining a tangible pricing function requires a closer examination of the connection between energy 
price and the EV drivers’ willingness to provide truthful trip information to the energy supplier (Bitar and 
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Xu 2013). The findings presented in this paper thus provide a basis for future behavioural research 
focussing on this connection. 

Summary, limitations and outlook 

In this article, we evaluated the aggregate economic benefit of an advanced metering approach where EV 
drivers provide information about the start of the next trip to the energy supplier. After an overview of 
related literature, we introduced a main challenge of renewable energy integration and developed a formal 
model to demonstrate how energy suppliers can benefit from trip information. We presented the data, 
which we used to conduct a simulation approach for the German energy grid and discussed a pricing scheme 
leveraging the ICT-supported saving potential. Nevertheless, several assumptions in our work need to be 
examined critically, and may build the basis for future research. 

We did not take the perspective of an energy supplier, but rather treat the supply side of the energy grid as 
a whole. Individual suppliers may use more instruments to counteract energy imbalances, like forecast 
models or energy trading opportunities with futures and options. Moreover, we simplify the model in 
various ways, e.g., by assuming that parking is not aborted before the scheduled ending and assuming 
uniform vehicle and charging infrastructure properties (e.g., linear charging progress, equal battery 
capacity and equal charging speed). Also, we do not consider adoption obstacles such as privacy concerns 
of users, i.e., skeptics might be prejudiced towards big (energy) companies knowing their driving behavior 
and whereabouts. Finally, we do not analyze the exact coherence between energy pricing and the customers’ 
willingness to disclose trip information and provide demand-side flexibility to the energy supplier. 
Enhancing our model by considering exact pricing functions seems promising, e.g., for behavioral research 
approaches. However, our article illustrated that advanced metering combined with incentive-compatible 
pricing structure bears enormous economical and also ecological potential. Thus, we think that our work 
may contribute to leveraging the potential of ICT-based information exchange in the context of market 
penetration of EVs to counteract the challenges of the energy turnaround with regard to energy imbalances 
in the grid. 
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