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Abstract. Digitalization heralds a new era of enterprise IT. It challenges CIOs to 
find a balance between renovating legacy IT and seizing the opportunities of dig-
ital technologies to keep up with competitors and start-ups. This requires organ-
izations to operate two software development modes simultaneously: the tradi-
tional and the agile mode. Despite substantial research on both modes, little is 
known about whether to implement distinct software development projects tradi-
tionally or agile. As a first step to addressing this gap, we propose a quantitative 
decision model that compares the cost and risk profiles of both modes associated 
with the implementation of a distinct project. The decision model integrates qual-
itative and quantitative characteristics of the project in focus and of the traditional 
and the agile mode. As for evaluation, we implemented the decision model as a 
software prototype and validated its behavior using sample projects as well as a 
sensitivity analysis. 

Keywords: Software Development, IS/IT Management, Agile Methods,  
Decision Model.  

1 Introduction 

Digitalization is transforming many industries [1]. Digital technologies enable innova-
tive business models and provide novel revenue opportunities. In their yearly CIO Sur-
vey, Gartner [2] relate digitalization to the third era of enterprise information technol-
ogy (IT). While the first era refers to the initial implementation of corporate information 
systems, the second era focused on improving reliability and stability. Currently, new 
technological trends are shaping the third era in a way most CIOs are not prepared for 
[2]. There is a tension between “doing IT right […], doing IT safely […] and working 
the plan” and “doing IT fast, […] doing IT innovatively […] and adapting” [2]. 

Although the third era of enterprise IT requires different architectures, processes, 
and governance, it mostly impacts software development (SD) [1]. To tackle the chal-
lenges related to the tension mentioned above, researchers and industry experts suggest 
operating multiple SD modes within a company [1, 3]. The two most common modes 
are the traditional (TSD) and the agile SD mode (ASD) [2]. TSD is about upfront plan-
ning and maximizing control, ASD about risk-taking and dealing with uncertainty to 



create innovation at a high pace [4]. Both research and industry call for operating TSD 
and ASD in parallel. Thus, there is a shift from talking about why and how to do agile 
toward finding an appropriate trade-off between TSD and ASD. 

Most approaches that support deciding about the appropriate SD mode for a distinct 
SD project (SDP) rely on qualitative analysis [3, 5]. Although there is research on quan-
tifying the characteristics of both modes, there are, to the best of our knowledge, no 
approaches that quantitatively analyze the decision between TSD and ASD with respect 
to the implementation of a distinct SDP [6]. Thus, we investigate the following research 
question: How can organizations decide whether to implement a distinct SDP in TSD 
or ASD mode regarding a cost/risk perspective? 

As a first step to answering this question, we adopted the design science research 
(DSR) paradigm and propose a quantitative decision model, taking a cost/risk perspec-
tive [7]. Our model incorporates characteristics inherent to the SDP in focus as well as 
characteristics specific to TSD and ASD mode. Mapping project characteristics to the 
cost/risk profiles of both SD modes, our decision model addresses the TSD/ASD trade-
off for a distinct SDP. Thereby, our model does not strive for exact estimations of an 
SDP’s business value. Rather, it aims to compare the economic effects associated with 
both SD modes. We thus take a tactical perspective on the TSD/ASD trade-off instead 
of a budget planning and cost estimation perspective.  

Following the DSR reference process [8], we first provide theoretical background 
on both SD modes as well as on cost, benefit, and risk management for SDPs. We also 
derive design objectives that characterize proper solutions to our research problem (ob-
jectives of a solution). We then introduce the design specification of our decision model 
(design and development), before we report on our evaluation activities so far (evalua-
tion). We conclude by summarizing key results, reviewing our limitations, and suggest-
ing topics for further steps to answer this research question. 

2 Theoretical Background and Design Objectives 

2.1 Traditional and Agile Software Development 

SD involves activities grouped into four phases, i.e., specification, design, implemen-
tation, and testing [9]. Although all SD methods follow these phases, they differ in how 
and how often these phases are traversed. TSD mode is sequential or iterative, while 
ASD is evolutionary or iterative and incremental [10]. The philosophy of TSD is plan- 
and process-driven as well as formal and tool-oriented [11, 12]. Aitken and Ilango [3] 
list methods for TSD mode. Methods related to TSD mode rely on the upfront planning 
of requirements, documentation, and long development cycles [11, 13]. This makes 
TSD mode beneficial for projects whose scope and features are known upfront. Defects 
or changes in scope or requirements, however, result in expensive iterations of previous 
phases [9]. To outline the characteristics of TSD, we use the waterfall model, which 
sequentially traverses the four SD phases without any iteration or repetition [14]. 



Due to long development cycles and rising demand for more flexible methods, ASD 
mode evolved in the 1990s. In 2001, experienced software practitioners issued the Ag-
ile Manifesto [15]. The idea behind ASD is the prioritization of individuals and inter-
actions over processes and tools, working software over comprehensive documentation, 
customer collaboration over contract negotiation, and responding to change over fol-
lowing a plan [15]. Dybå and Dingsøyr [13] as well as Lee and Xia [10] provide an 
overview of methods related to ASD mode. A well-known ASD method is SCRUM. 
The essential part of SCRUM is a sprint, an iteration that may last from one day to four 
weeks. After each sprint, there is a working software artifact ready to be released. ASD 
methods are primarily characterized as being able to react to changes in requirements 
and to encourage developers’ creativity and autonomous work. As a disadvantage, ASD 
heavily relies on trustful relationships among customers, developers, and managers as 
well as a high amount of self-reliance of all participants. Furthermore, ASD often faces 
problems in a highly regulated and plan-driven environment [3]. Aitken and Ilango [3], 
Conboy [11], as well as Nerur et al. [12] compare TSD and ASD mode according to 
mode-specific characteristics.  

The argumentation above revealed structural differences between TSD and ASD 
when implementing an SDP. These differences make the two modes differently suitable 
for specific projects. Thus, decisions about the appropriate SD mode must account for 
these differences. Against this background, we define the following design objective: 

(DO.1) Differences of TSD and ASD: The decision on the appropriate SD mode must 
account for structural differences of TSD and ASD mode. 

2.2 Costs and Risk in Software Development Projects 

The dynamic environment in the third era of enterprise IT challenges managers to 
choose among different SDPs and to decide in which mode to implement these SDPs. 
In the last decade, researchers and practitioners proposed success criteria and frame-
works for project valuation [16]. Techniques that help quantify an IS/IT project’s value 
fit into five categories: net present value (NPV) methods, rate of return methods, ratio 
methods, payback methods, and accounting methods [17]. The cost-benefit analysis, a 
representative of the ratio methods, has evolved into the most popular approach to the 
valuation of IT projects [18]. With this popular approach, the qualitative and quantita-
tive benefits of a distinct project are compared to implementation and operating costs. 
Finally, a project has a positive business value, if benefits exceed costs. Besides benefits 
and costs, risk evolved into a third recognized dimension of cost-benefit analysis [19]. 
As an SDP’s largest benefits realize at run time of the related software product, they 
are out of our decision model’s scope [20]. 

The estimation of an SDP’s implementation costs is a well-covered topic in software 
engineering [6]. Thus, many software cost estimation models are available. These mod-
els can be grouped into five categories, i.e., model-based, expert-based, learning-ori-
ented, regression-based, dynamics-based, and composite approaches. Model-based ap-
proaches propose algorithms that are specifically developed for the SDP context [9]. 
COCOMO is a model- and regression-based algorithmic approach for estimating the 



costs of projects conducted in TSD mode based on input parameters such as project 
size, scaling factors, and effort multipliers [21]. As a widely recognized approach to 
software cost estimation, we use the improved version COCOMO II in our decision 
model for projects executed in TSD mode. There are also cost estimation models for 
projects conducted in ASD mode. Cao et al. [22] suggest dynamics-based methods that 
can be adjusted to changing requirements. Yang et al. [23] as well as Benediktsson et 
al. [24] modify COCOMO II for ASD mode, adjusting the number and length of itera-
tions as well as by incorporating additional efforts. As COCOMO II and the extensions 
proposed by Benediktsson et al. [24] use the same input parameters, their recommen-
dations are comparable. Thus, we rely on these approaches to consistently compare the 
costs for implementing an SDP in TSD and ASD mode. 

In general, risk is an uncertain event or condition that, if it occurs, has a positive or 
negative effect on a project objective [20]. In our study, we focus on IT project risks, 
as we investigate SDPs from a stand-alone perspective and focus on the implementation 
phase. Studies about IT project risk are provided by Schmidt et al. [25], Boehm [26], 
Bannerman [20]. Referring to these studies, the most important risks are the following 
ones: lack of top management support, misunderstanding of requirements, changes in 
requirements, lack of user involvement, and lack of adequate project staff. We aggre-
gate these risks into three risk types that represent the major impacts of the above-men-
tioned risk factors on an SDP, i.e., the risk of requirement changes, the risk of delay, 
and the risk of defect. In our model, we adjust an SDP’s implementation costs by risky 
costs originating from the risk types just introduced [27]. 

The preceding reasoning underscores the relevance of an integrated cost/risk-per-
spective when deciding about the appropriate SD mode for a distinct SDP. An inte-
grated perspective is not only necessary as for economic factors, but also when it comes 
to the comparison of both SD modes. We define the following design objective: 

(DO.2) Integrated economic valuation: The decision on the appropriate SD mode re-
quires considering economic dimensions (e.g., costs and risks) in an integrated 
manner. This decision requires ensuring the comparability of both modes. 

3 Design Specification 

Our decision model systemizes and combines factors relevant for determining the ap-
propriate SD mode for a distinct SDP. Thus, our unit of analysis is the implementation 
of a distinct SDP. In our basic setting, the management has already strategically decided 
to implement the SDP, i.e., the benefits outweigh costs and risk independent from the 
chosen SD mode. Only the decision about the appropriate SD mode is open. We assume 
that the organization has the capabilities and expertise to conduct the SDP in focus in 
both modes (Assumption 1). In our decision model, this operative decision is based on 
the costs and the risks associated with TSD and ASD mode. Although researchers point 
to qualitative factors beyond a cost/risk perspective, we focus on their economic im-
pacts and model them implicitly via the costs and risks effects of the SDP in focus [28]. 
As stated, we abstract from benefits as they materialize at run time. For the same reason, 
we focus on those costs and risks that accrue during the SDP’s implementation. 



The decision about the appropriate SD mode involves two major challenges. First 
and inherent to almost all economic decisions, the decision requires resolving trade-
offs. In our TSD/ASD trade-off, the advantages and drawbacks of TSD mode face those 
related to ASD mode. Second, the decision is multi-dimensional. In order to address 
the TSD/ASD trade-off, the involved decision-makers must integrate quantitative and 
qualitative factors. We address these challenges by integrating these factors and evalu-
ating their effects economically from a cost/risk perspective. 

3.1 General Setting  

We first introduce the general setting of our model and outline the TSD/ASD trade-off. 
We also define the model’s objective function. From an economic perspective, we can 
break down the TSD/ASD trade-off into differences regarding the cost/risk profiles of 
an SDP in both SD modes. There are projects for which the cost/risk profiles dovetail, 
with the TSD/ASD trade-off clearly tending to one side. We refer to such SDPs as TSD- 
or ASD-type projects. TSD is the preferable SD mode if the cost and risk advantages 
of TSD exceed those of ASD – and vice versa. There are also projects whose profile 
cannot be unambiguously assigned to either type. 

To facilitate a structured presentation of the decision model, we first consider costs 
and risks separately, before integrating them. The deterministic base costs 𝐶 are defined 
as those costs associated with the SDP’s implementation. We model the base costs by 
using the cost estimation models COCOMO II by Boehm et al. [21] for TSD mode and 
the extensions of Benediktsson et al. [24] for ASD mode. Furthermore, we define the 
risk 𝑅 as additional costs taking the risks of defects, requirement changes, and delays 
into account. Basically, there are two reasons why we chose COCOMO II for modeling 
base costs: First, COCOMO is popular and well-known among researchers and practi-
tioners, which is why it increases the comprehensibility of our model [9]. Second, CO-
COMO II and the extension by Benediktsson et al. [24] ensure comparability as both 
methods use identical input parameters. In fact, our aim is to offer decision support on 
the comparison of TSD and ASD for a distinct SDP, and not to estimate costs as accu-
rately as possible. 

To evaluate the SDP’s costs and risk depending on the chosen SD mode, we use the 
certainty equivalent method. The certainty equivalent method is an acknowledged ap-
proach for corporate decision-making in risky situations [29]. It has also proven to be 
useful for decision-making in IS/IT projects as well as in IS/IT project portfolio man-
agement [16, 30]. The certainty equivalent represents the certain amount of money that 
creates the same subjective utility for the involved decision-makers as the correspond-
ing risky situation [27]. Applying the certainty equivalent enables comparing the deter-
ministic base costs C and the risky additional costs R. For decision-makers with a con-
stant absolute risk aversion	α, measured via the absolute Arrow-Pratt measure, and for 
a normally distributed risk with expected value 𝜇& and variance 𝜎&(, the certainty equiv-
alent of a distinct SDP for a chosen SD mode is given by Eq. (1) [31]. As the certainty 
equivalent can be structurally decomposed into the expected costs and a risk premium, 
we refer to the certainty equivalent as risk-adjusted costs to outline both decisive com-
ponents. On this foundation, we use the difference between the risk-adjusted costs that 



accrue when implementing the SDP in TSD or in ASD mode as our objective function, 
which is shown in Eq. (2). 
𝛷 = 	𝔼 − 𝐶 + 𝑅 −

𝛼
2
∙ 𝑉𝐴𝑅 − 𝐶 + 𝑅 = −𝐶 − 𝜇& −

𝛼
2
∙ 𝜎&(, 𝛼 ∈ ℝ6 (1) 

∆𝛷 = 𝛷;<= − 𝛷><=	 (2) 

In case	∆𝛷 > 0, the SDP should be implemented in TSD mode, and vice versa. Below, 
we analyze the costs, their components, and the corresponding parameters. After that, 
we provide more details on the risk component. 

3.2 Cost Perspective 

First, we focus on the base costs of an SDP. The base costs for implementing an SDP 
depend on the chosen SD mode, because TSD and ASD mode feature different cost 
structures [3]. In TSD mode, the SDP is organized in a long phase which is processed 
sequentially in a single iteration. In contrast, ASD mode is organized and processed in 
several smaller iterations, so-called sprints. As mentioned above for modeling the base 
costs we use COCOMO II by Boehm et al. [21] for TSD mode and its extension from 
Benediktsson et al. [24] for ASD mode. 

The base model of COCOMO II describes the SDP’s effort in TSD mode in of per-
son-months by taking the project size to the power of a scaling exponent 𝐸 (Eq. 3). The 
number of person-months multiplied with the staff costs leads to the base costs. The 
variable size	is measured in thousand source lines of code (KSLOC). Other measure-
ment units for size (e.g., function points) are applicable as well. The constant 𝐴 is an 
effort coefficient for productivity and the parameters 𝐸𝑀G, … , 𝐸𝑀GI are effort multipli-
ers that represent factors like product complexity, programmer capability, or platform 
volatility. The factor 𝑎 thus adjusts the effort regarding productivity. The scaling expo-
nent, which indicates economies 𝐸 < 1  or diseconomies of scale 𝐸 > 1 , comprise 
a constant 𝐵 and scale factors 𝑆𝐹G, … , 𝑆𝐹O accounting, for example, for development 
flexibility, team cohesion, and process maturity. If all scale factors are rated “very high” 
and 𝐵 is calibrated as COCOMO II suggests, 𝐸 equals at least 0.91, implying economies 
of scale. Economies of scale can hardly be realized in SDPs. In almost every possible 
parameterization of COCOMO II, the cost function exhibits an exponent between 1.0 
and its maximum 1.226, indicating diseconomies of scale. This is as communication 
and integration overheads increase over-proportionally with the project size. Eq. (3) 
represents the base model for TSD mode Boehm et al. [21]. 

𝑃𝑀;<= = 𝑎 ∙ 𝑠𝑖𝑧𝑒U										with	𝐸 = 𝐵 + 0.01 ∙ 𝑆𝐹Z
O

Z[G
	and	𝑎 = 𝐴 ∙ 𝐸𝑀_

GI

_[G
 (3) 

Benediktsson et al. [24] adjust the base model of COCOMO II for ASD mode. They 
divide the project size into sprints, a transformation that causes an initial effort for de-
fining the breakdown structure. Moreover, sprints are interpreted as sub-projects. Con-
sequently, Benediktsson et al. [24] apply the exponent 𝐸 to the sprint sizes and sum up 
the resulting efforts, arguing that smaller sprints require less overhead and planning 
compared to the single large phase in TSD mode. In reality, the overall project length 
may vary between the different SD modes. However, there is no evidence that one mode 
is dominating the other. Therefore, and for reasons of comparability, we assume the 



project length to be identical for TSD and ASD mode (Assumption 2). Our model setup 
would allow for length discounts in favor of ASD by subtracting a certain number of 
sprints from the length calculated for project implementation in TSD mode. Such a 
parameter, however, would be subject to extreme estimation inaccuracies and increase 
the complexity of our decision model. Furthermore, sprints can differ in size and con-
tent, which depends very much on the SDP at hand. We assume that all sprints take a 
constant amount of time (e.g. two weeks, four weeks) in case the SDP is implemented 
in ASD mode (Assumption 3). Thus, we divide the project length calculated for TSD 
mode into 𝑛 equi-length sprints in ASD mode and apply the approach of Benediktsson 
et al. [24] [32]. Eq. (4) shows the base model for implementing the SDP in ASD mode 
as an adaption of the TSD mode estimation. 

In Eq. (4), the parameter 𝑑c models the overhead of the total effort required to define 
the breakdown structure. It depends on the total number of sprints [24]. Thereby, 𝑑c is 
calibrated by a linear interpolation between the relative effort for defining one sprint 𝑒 
and for defining the largest number of sprints 𝑓 (Eq. 5). The parameter 𝑐 represents the 
overhead costs per sprint and accounts for the additional overhead within single sprints. 
The number of sprints 𝑛 is gained from the calculation of the project length in CO-
COMO II multiplied with the number of sprints per month. The exponent 𝐹 consists of 
similar components as its counterpart for TSD mode. The constants 𝐺 (called C in CO-
COMO II) and 𝐷 are obtained by calibrations based on former projects [21]. 

𝑃𝑀><= = 𝑑c ∙ 𝑎 ∙ 𝑠𝑖𝑧𝑒U + 𝑛 ∙ 𝑎 ∙
𝑠𝑖𝑧𝑒
𝑛

∙ 1 + 𝑐
U

 (4) 

with 𝑛 = 𝐺 ∙ 𝑃𝑀;<=
j ∙ 𝑠𝑝𝑟𝑖𝑛𝑡𝑠	𝑝𝑒𝑟	𝑚𝑜𝑛𝑡ℎ and 𝐹 = 𝐷 + 0.02 ∙ 0.01 ∙ 𝑆𝐹ZO

Z[G  and  

𝑑c = 𝑓 − 𝑒 ∙
𝑛 − 1
𝑛 − 𝑁

+ 𝑒 (5) 

Figure 1 illustrates the cost/size relationships for projects implemented in TSD and 
ASD mode. Costs are measured in Monetary Units [MU], size in KSLOC. Since SDPs 
typically exhibit diseconomies of scale, we apply an exponent larger than 1 [21].  

 
Figure 1. Costs of an SDP with diseconomies of scale depending on size 

For 𝐸 ≠ 1, the two cost curves cross each other at a distinct intersection point. For small 
projects, ASD mode appears more favorable. This is as the initial effort required for 
creating a small number of sprints in ASD mode is small compared to the initial over-
head for planning in TSD mode. Thus, TSD mode needs a minimum project size to 
justify the initial overhead. From a pure cost perspective, TSD mode is becoming more 
preferable with an increasing project size. This is as the initial overhead is distributed 
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over the project length. For large projects, the initial overhead for ASD mode is becom-
ing relatively expensive as planning and managing sprints is getting complex [33]. 

3.3 Risk Perspective 

In our analysis, we focus on three risk types, i.e., the risk of defect, risk of requirement 
changes, and risk of delay. Defects, changes in requirements, and delays can happen 
several times during implementation of an SDP. We model each risk type as a normally 
distributed variable with expected additional costs and a variance per sprint (Assump-
tion 4) [27, 30]. Typically, the expected value 𝜇 per risk type is denoted in percent of 
the corresponding total costs 𝐶 depending on TSD or ASD mode. Furthermore, the 
variance 𝜎( of each risk type is measured in percent of the expected value. 

We add this risk perspective to our decision model in order to incorporate the spe-
cific characteristics of TSD and ASD mode. The risk of defect covers the risk of having 
major defects in the software product due to developer mistakes [25, 26]. Boehm and 
Turner [34] model this risk based on an SDP’s criticality. A large project size combined 
with a lack of upfront planning and inexperienced developers, for example, can cause 
such defects. A defect typically results in negative economic effects, which we model 
by expected additional costs resulting from a defect 𝜇=tu and their variance	𝜎=tu( . Since 
there is a detailed ex-ante planning in TSD mode, the expected additional costs and 
their variance are typically smaller as compared to ASD mode [12]. The risk of require-
ment changes, which Boehm and Turner [34] call the dynamism of a project, addresses 
change requests during project implementation. Due to regular releases, frequent stake-
holder feedback as well as an environment geared toward refactoring and backlog re-
finement, the expected additional costs for requirement changes 𝜇vwx and their vari-
ance	𝜎vwx(  are generally lower in ASD mode than in TSD mode [10]. The risk of delay 
addresses the risk of missing a deadline or not being fast enough regarding time-to-
market. This risk is particularly high if the software product exhibits a short time-to-
market. Delays result in expected additional costs 𝜇=ty and variance	𝜎=ty(  from losing 
market share to competitors or from financial penalties due to missed deadlines. ASD 
mode can better mitigate the risk of delay as running software increments can be re-
leased more flexibly [5]. Thus, expected additional costs and the variance are generally 
higher in TSD mode. 

In order to aggregate the three risk types, we must consider dependencies. There can 
be intra- and inter-temporal dependencies among the risk types. For example, in case 
of a major defect, the chance for a delay in the same period is higher than usual. We 
account for these dependencies between two risk types based on the Bravais-Pearson 
correlation coefficient	𝜌 [35]. As an SDP lasts multiple periods or sprints, the risk types 
may also influence themselves over time. For example, if a major delay occurs, the 
chance for a greater delay in the following periods could be higher. Further, the risk of 
defect may tend to increase throughout the project in TSD mode. This drift that in-
creases costs of defects over project time could be modeled via martingales. Alterna-
tively, we could use individual distributions for every sprint, which would lead to more 
parameters and a more complex model. In our decision model, we therefore abstract 
from such auto-correlated structures, assuming that the distribution of each risk type is 



identical over all periods (Assumption 5). This assumption leads to an underestimation 
of the costs of defects in TSD mode. In general, assuming inter-temporal independence 
underestimates the overall risk exposure. However, as the risk is underestimated in both 
SD modes and as we compare both SD modes regarding the implementation of a con-
crete SDP, this has not effect on the recommendations of our decision model. On this 
assumption, we can sum up the expected additional costs and variances of the three risk 
types per sprint 𝑡 to derive the total expected additional costs 𝜇& and their variance 𝜎&(. 
The result is shown in Eq. (6) and (7).  
𝜇& = 𝜇{,=tu + 𝜇{,vwx + 𝜇{,=ty

c

{[G
= 𝑛 ∙ 𝜇=tu + 𝜇vwx + 𝜇=ty  (6) 

𝜎&( = 𝜎{,_
Z

𝜎{,Z𝜌_,Z
_

c

{[G
= 𝑛 ∙ 𝜎_

Z
𝜎Z𝜌_,Z

_
 (7) 

with 𝑖, 𝑗 ∈ DEF, CHG, DEL  
On this foundation, the objective function from Eq. (2) can be rewritten as shown in 
Eq. (8). Thereby, 𝐶=�� represents the costs for a software developer. 

∆Φ = −𝐶=�� ∙ 𝑎 𝑠𝑖𝑧𝑒U − 𝑑c ∙ 𝑠𝑖𝑧𝑒U + 𝑛 ∙
𝑠𝑖𝑧𝑒
𝑛

∙ 1 + 𝑐
U

− ∆𝜇& −
𝛼
2
∙ ∆𝜎&( (8) 

4 Evaluation 

To validate our decision model, we implemented its design specification as a software 
prototype [36]. The prototype enabled conducting sample calculations and a sensitivity 
analysis. As for our calculations, we consider two fictional sample SDPs specified in 
Table 1. This setting does of course not account for all possible projects. We chose the 
parameters such that one project favors each mode. The input parameters for the base 
costs are identical for both projects, but the risk parameters differ. Depending on the 
specific cost/risk profile, we have a TSD-type project with a high exposure to defects 
and an ASD-type project with a high exposure to requirement changes and delays. One 
example for such a TSD-type project is the implementation of a new core system within 
a bank. An example for the ASD-type project is the development of a new payment 
application for smartphones. For the TSD-type project, the expected additional costs of 
defect and the related variance are quite large, while the other risks are rather small. 
For the ASD-type project, it is the vice versa. Additionally, the risks of the TSD- and 
the ASD-type project vary according to the risk profiles of both SD modes. We keep 
the size flexible to enable a comparison between costs and risks for both SD modes 
with respect to different project sizes. 

Table 2 shows the correlation coefficients of the risk types for both modes, which 
we use for our calculations. For both modes, the risk of defect is positively correlated 
with the risk of delay. As TSD is not as adaptive and flexible as ASD, a defect in TSD 
has a larger impact on the risk of delay compared to ASD. For TSD, a change of re-
quirements increases the risk of delay, as heavy planning does not allow for changes. 
ASD mode can cope much better with changed requirements. As a consequence, the 
risk of requirement changes and risk of delay are uncorrelated in ASD mode. 



Table 1. Specification of a TSD-type and an ASD-type sample project 

Base costs input parameters Risks TSD-type project Risks ASD-type project 
𝑎 2.94 𝑆𝐹O 6.24 

 TSD 
mode 

ASD 
mode  TSD 

mode 
ASD 
mode 𝐵 0.91 𝐸𝑀_ 1 

𝐺 3.67 𝐶=�� 5,000 MU 𝜇=tu 1.5	% 4	% 𝜇=tu 1	% 2	% 
𝐷 0.28 𝑐 0.15 𝜇vwx 1.25	% 0.5	% 𝜇vwx 2.5	% 1.5	% 
𝑆𝐹G 3.72 𝑒 0.05 𝜇=ty 1.25	% 0.5	% 𝜇=ty 2.5	% 1.5	% 
𝑆𝐹( 3.04 𝑓 0.4 𝜎=tu 5	% 30	% 𝜎=tu 5	% 15	% 
𝑆𝐹� 4.24 Sprints 2 per mo. 𝜎vwx 15	% 10	% 𝜎vwx 22.5	% 10	% 
𝑆𝐹� 4.38 𝑆𝑖𝑧𝑒 𝑠𝑖𝑧𝑒 𝜎=ty 15	% 10	% 𝜎=ty 22.5	% 10	% 

Table 2. Sample correlations between risk types for TSD and ASD mode 

TSD mode ASD mode 
𝜌_,Z DEF CHG DEL 𝜌_,Z DEF CHG DEL 
DEF 1 0 0.5 DEF 1 0 0.25 

CHG 0 1 0.5 CHG 0 1 0 
DEL 0.5 0.5 1 DEL 0.25 0 1 

 
We first analyze the ASD-type project from Table 1 and choose a constant absolute risk 
aversion α = 0.0002. This is reasonable according to Bamberg and Spremann [37]. 
Figure 2 (left chart) illustrates the results, where we show different deltas between TSD 
and ASD mode in terms of costs, risk, and risk-adjusted costs while varying the project 
size between 0 and 300 KSLOC. The dotted line depicts the delta in terms of costs, the 
dashed line depicts the delta in terms of risk, and the continuous line depicts the delta 
in terms of risk-adjusted costs. 

As outlined, the cost advantage for ASD is only given for small projects. The initial 
effort required for accomplishing a small number of sprints in ASD mode is relatively 
small compared to the overhead of upfront planning in TSD mode. With larger project 
sizes, the initial planning effort in TSD mode increases less than the overhead for plan-
ning larger amounts of sprints in ASD mode. Thus, TSD has a cost advantage for larger 
project sizes. This finding in our sample calculation complies with extant knowledge. 
Researchers have argued that TSD mode is more favorable for large projects in general 
[38]. From a risk perspective, ASD is the preferable SD mode for all investigated pro-
ject sizes between 0 and 300 KSLOC. The risk advantage for ASD always exceeds the 
cost advantage for TSD mode. Therefore, ASD is the appropriate mode for the sample 
project at hand. For decision-makers with a lower level of risk aversion (𝛼), the delta 
between TSD and ASD in terms of risk-adjusted costs is depicted by the continuous 
grey line in Figure 2 (left chart). In this case, ASD is not favorable for all project sizes. 
In case of more risk-seeking decision-makers, the cost advantage for TSD exceed the 
risk advantage for ASD for large project sizes. This example illustrates that deciding 
on the SD mode is similar to balancing the certain cost advantage of TSD against the 



risk advantage of ASD. Economically speaking, decision-makers charge a risk pre-
mium for requirements changes on the safe cost advantage for TSD mode. 

 
Figure 2. Calculation for the ASD-type sample project and grey-scale plot of relative delta 

Next, we analyze the TSD-type project from Table 2. Table 1 shows the correlation 
coefficients of the risk types for both modes, which we use for our calculations. For 
both modes, the risk of defect is positively correlated with the risk of delay. As TSD is 
not as adaptive and flexible as ASD, a defect in TSD has a larger impact on the risk of 
delay compared to ASD. For TSD, a change of requirements increases the risk of delay, 
as heavy planning does not allow for changes. ASD mode can cope much better with 
changed requirements. As a consequence, the risk of requirements changes and risk of 
delay are uncorrelated in ASD mode. The cost advantages of TSD and ASD are the 
same as for ASD-type project, as the input parameters for the base costs are independent 
of the SD mode. Further, the risk advantage of TSD is positive for all project sizes, 
making TSD the preferable mode for nearly all project sizes. With the above examples, 
we demonstrated the suitability of our decision model by conducting sample calcula-
tions for a TSD- and an ASD-type sample project.  

To demonstrate the robustness of our decision model, we now analyze the delta in 
risk-adjusted costs between both SD modes by varying the size and risk structure of a 
given project using a sensitivity analysis. When setting up the sensitivity analysis, two 
features must be considered: First, to stay comparable with an increasing project size, 
we rely on the relative delta in risk-adjusted costs, i.e., we divide the absolute delta in 
risk-adjusted costs by the absolute risk-adjusted costs of the respective SD mode. We 
do not consider the absolute risk-adjusted costs delta, which gets biased with an in-
creasing project size. Second, as we only have a single dimension for describing the 
risk structure, we divide the risk of defect, which is typical for TSD-type projects, by 
the sum of the risk of requirement changes and delay, which are more typical for ASD-
type projects. Thereby, we get a risk ratio that indicates a risk profile in favor of ASD 
for values from the interval 0,1  and in favor of TSD for values from 1,∞ . As a 
result, we get a three-dimensional analysis with project size and risk ratio on the hori-
zontal and vertical axis, and the delta in relative risk-adjusted costs as a grey-scale plot. 
The delta in relative risk-adjusted costs is depicted on a grey-scale with bright indicat-
ing a high delta and dark indicating a low delta. The dark area shows settings where 
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decision-makers are indifferent, whereas the bright areas illustrate robust decisions in 
favor of either TSD or ASD. We start with the TSD-type project from Table 1. We then 
reduce the risk of defect successively, while equivalently increasing the risk of require-
ment changes and delay until we end up with the ASD-type project from Table 1. This 
way, we get comparable projects regarding costs and a balanced risk profile half way 
between both projects (i.e., risk ratio = 1). The black area and line in Figure 2 (right 
chart) shows the decision curve, i.e., the area of indifference between both SD modes. 
Along the decision curve, the relative delta in the risk-adjusted costs is less than one 
percent. The grey decision tube around the black line depicts the delta values that are 
less than five percent of the respective risk-adjusted costs. Within this tube, the decision 
is not profound, but slightly tends to one of both modes. Decision-makers have to be 
careful regarding decisions within the five percent decision tube, as estimation errors 
may strongly influence the decision. For small projects, the decision is mainly influ-
enced by the risk advantage of TSD or ASD depending on the SD mode, since the cost 
advantage of ASD is negligibly small. The black area indicates that our decision model 
is indifferent for small projects as it strongly depends on the risk distribution of the 
project at hand and the SD modes. However, this indifference is plausible, as the deci-
sion on the appropriate SD mode for a small SDP does not carry as much weight in 
terms of total costs as for large SDPs. The managerial implication is that decision mak-
ers should focus on finding the appropriate mode for larger SDPs, since for small pro-
jects the cost and risk difference is negligibly small. With an increasing project size, 
the costs are strongly in favor of TSD mode, leading to a steep decrease of the decision 
curve. The decision curve then converges towards the horizontal axis, indicating a 
larger area for unambiguous decisions in favor of TSD for very large projects. This is 
due to the cost advantage of TSD. That is, it can be reasonable from a cost/risk perspec-
tive to implement an SDP in TSD despite a risk advantage for ASD mode. For strongly 
ASD-type SDPs, i.e., projects with a very strong risk of requirement changes and de-
lays, however, ASD is appropriate. The managerial implication of this finding is that 
decision makers should carefully evaluate the project’s risk in both modes, since it 
could reverse a strong cost advantage for large projects. Although the graph in Figure 
2 indicates otherwise, there is no reason to believe that the majority of projects should 
be conducted in TSD mode. First, SDPs in practice are not equally distributed over the 
size and risk dimensions. Second, we analyzed only one particular sample SDP in Fig-
ure 2. In a practical setting, our model primarily serves as decision support. Decision-
makers should nevertheless carefully evaluate the outcome by taking their experience 
and other models into account. 

5 Conclusion 

In this study, we investigated how organizations can decide whether to implement a 
distinct SDP in TSD or ASD mode. Building on the characteristics of the SDP in focus 
and the characteristics of both SD modes, we proposed a decision model that analyzes 
the costs and risks associated with the implementation of a distinct SDP. Our model 
builds on the cost estimation method COCOMO II for TSD mode and the extensions 



proposed by Benediktsson et al. [24] for ASD mode to achieve comparability between 
both SD modes. To extend a purely cost-based view, the model accounts for three major 
risk types related to the implementation of an SDP, i.e., risk of defect, requirement 
changes, and delay. Besides these risk types, the decision model incorporates sprint 
length and overhead costs as characteristics of TSD and ASD mode. Our contribution 
is twofold. First, we bring the two cost estimation approaches together. Second, we 
extend the solely cost based view by a risk perspective. As for evaluation, we applied 
the decision model to sample projects with different input parameters. We also con-
ducted a sensitivity analysis based on a software prototype to validate the decision 
model’s suitability and robustness. The sensitivity analysis corroborated that the deci-
sion model yields plausible results. Overall, we contribute to the prescriptive 
knowledge on software development with a decision model as concrete artifact and its 
instantiation as a software prototype. 

Our decision model is beset with limitations. First, we assume the risk types to be 
independent over time and normally distributed. Thus, the decision model underesti-
mates risks associated with implementing an SDP. Risks may also increase or decrease 
over time, e.g., the expected additional costs for a change in requirements may increase 
over time if the project is executed in TSD mode. Research on inter-temporal depend-
encies of SD risks is required to implement these effects into our decision model. Future 
research should explore the risk structure of SDPs. Second, the decision model focuses 
on costs and risks that accrue during SDP implementation. Considering an SDP’s busi-
ness value also requires integrating benefits. In ASD mode, design and run time can no 
longer be separated as benefits accrue after each sprint. In TSD mode, however, benefits 
only realize after the SDP has been fully completed. Thus, we recommend that further 
research extends the decision model toward a cost-benefit analysis that includes bene-
fits and a runtime perspective. Third, we focused on individual SDPs, ignoring the port-
folio perspective. Future research should investigate how project dependencies influ-
ence the TSD/ASD trade-off. Fourth, as a first step, we demonstrated and analyzed the 
decision model via sample projects and a sensitivity analysis. Thus, the decision model 
would benefit from naturalistic evaluation, e.g., real-world case studies. 
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