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Abstract  
The increasing share of renewable energy sources poses the challenge of volatile energy generation, 
requiring demand side management (DSM) to manage such volatility. In view of the high industrial 
electricity demand and the increasing charging demand of electric vehicles (EVs), both industry and 
mobility represent relevant areas of DSM. However, the combination of EV charging and energy-intensive 
industrial processes still contains untapped synergy potentials. Thus, we present a mixed-integer linear 
program and quantify the economic and ecologic potential of combining energy flexibilities of industry and 
electric mobility within a case study. For our evaluation, we compare the results of our model to a 
benchmark case that separately manages industry and EV flexibilities. Our findings suggest that 
implementing our approach would yield both economic and ecological benefits, resulting in a reduction in 
anticipated costs and emissions, as well as a decrease in associated uncertainty. 
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Introduction 
As countries transition from fossil fuels to renewable energy sources (RES), they are confronted with 
considerable challenges. In nations with expansive territories and dispersed populations, such as Australia 
and Russia, the expansion of transmission infrastructure to cover vast distances poses a significant hurdle. 
In contrast, densely populated countries like Germany and Japan struggle with the integration of needed 
infrastructure within more limited space. Similarly, countries with rapidly growing suburban areas, such as 
India and Brazil, additionally need to address the challenge of balancing urban and rural energy demands. 
Despite these national differences, the variability inherent in RES-based electricity generation presents 
challenges for industrial sectors worldwide that traditionally require a continuous and high energy supply. 
Additionally, the increasing use of electric vehicles (EVs) raises concerns that the existing distribution 
networks may become strained beyond their capacity (Godina et al., 2016). These concerns are due to 
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physically infeasible power flows and corresponding demand peaks in the network, which can occur when 
EV charging and energy-intensive production processes coincide. Therefore, industrial companies must 
adapt their processes to be more energy-flexible (given volatile electricity generation of RES) and manage 
the rapid growth of EV fleets. This paper addresses these challenges and explores potential solutions that 
can significantly increase the energy flexibility of companies. 

To become more energy-flexible and balance the growing time-disparity between RES generation and 
electricity demand, companies can use demand-side management (DSM) and electricity storages. DSM 
refers to a system's ability to modify its energy usage, allowing smart energy-flexible factories to adjust their 
load profile without negatively impacting production outcomes. In this context, the deployment of EV 
batteries as a means of intermittent electricity storage has become an increasingly appealing option, 
particularly as the number of available EVs continues to surge. Vehicle-to-X approaches, in particular 
vehicle-to-factory (V2F), involves utilizing EV batteries available in a company's EV charging park as 
cumulative energy storage units. Despite some studies investigating the V2F approach, a comprehensive 
analysis of the synergy potentials arising from actively combining energy flexibilities of industrial 
production processes and EV (dis-)charging is still lacking. To address this research gap, this paper aims to 
answer the following research questions: 

• RQ1: How can the combination of industrial production processes and EV charging provide 
additional energy flexibility beyond the mere sum of the two flexibility potentials? 

• RQ2: What are the economic and ecological potentials of the additional energy flexibility? 
We address these research questions by first reviewing existing literature on V2F. On that basis, we develop 
a mixed integer linear programming (MILP) optimization model for the combined management of 
industrial and EV flexibility. In the following, we quantitatively evaluate our model in comparison to a 
benchmark case, where industrial energy flexibility and EV charging management are considered 
separately. Lastly, we conclude the results and provide an outlook for future research to advance the global 
energy landscape. 

Related Research 
We conducted a systematic literature review on V2F-related research, utilizing Scopus, ScienceDirect, and 
SpringerLink. We used a search query focused on EV charging and industrial energy flexibility, limited to 
title, abstract, and keywords. Our search was expanded through backward and forward snowballing, 
starting from our initial set of papers. In addition, we excluded all contributions published earlier than 2016 
to ensure relevance. In the following sections, we provide a brief overview of the identified literature. 

Vehicle-to-Factory 

With the growing number of EVs, the availability of mobile battery storage is increasing, enabling different 
DSM techniques, for example, the optimization of self-consumption, minimization of peak loads, load 
shifting, and grid services (Roth et al., 2019). In the context of V2F, existing literature places significant 
emphasis on the optimization of self-consumption. In the context of company-owned EV fleets, several 
studies have demonstrated the potential of EV batteries to compensate for electricity demand/supply 
mismatches between variable RES generation and manufacturing systems (Beier et al., 2016; Betz & 
Lienkamp, 2016; Frendo et al., 2018). Beier et al. (2016) compared an in-house EV fleet with a stationary 
battery storage system, Frendo et al. explored EV charging strategies to examine effects on infrastructure 
utilization, and Betz & Lienkamp (2016) combined energy- and charging-management to achieve a higher 
self-consumption. Studies have also focused on cars that employees use for commuting to their workplace 
(Azimi et al., 2021; Casini et al., 2019; Guo et al., 2022; Jones et al., 2021; Roth et al., 2019; Yu et al., 2022). 
For example, Roth et al. (2019) demonstrated that targeted charging and discharging of employees' EVs can 
significantly increase the self-consumption rate. Additionally, alternative objectives of V2F technology have 
also been explored, such as the maximization of profits of the industrial microgrid (Azimi et al., 2021), the 
maximization of income of EV users (Guo et al., 2022), or an increase of network stability (Casini et al., 
2019). However, a significant research gap remains regarding the ability of an EV fleet to balance a given 
production process profile. As highlighted by Roth et al. (2019), “the full potential of V2F requires a 
combination with energy-flexible production processes”. While the presented studies have demonstrated 
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the feasibility of V2F approaches, research on the combination of EV charging and energy-flexible industrial 
production processes is still scarce. 

Energy-Flexible Companies 

The demand-oriented optimization of industrial energy flexibility potentials per se is a widely discussed 
topic in relevant literature (e.g., Angizeh et al. (2017), Keller et al. (2016), Roth et al. (2020), or Wanapinit 
et al. (2020)). Yet, many of the existing contributions are prone to certain limitations in terms of holism, 
interoperability, replicability, and transferability. Bahmani et al. (2022) developed an optimization model 
that supports industrial companies in selecting when (i.e. at which time) and how (i.e., the schedule) they 
should allow for flexibilities to optimize profit. They base their work on the Energy Flexibility Data Model 
(EFDM) of Schott et al. (2019), which allows for a generic description of energy flexibilities that abstracts 
from the specifics of the manufacturing infrastructure. Since the focus of our work is not on the physical 
design of manufacturing systems, but rather on the flexible adaptation of energy consumption and the 
interplay of bidirectional charging, we use the EFDM and parts of the profit-maximizing optimization 
proposed by Bahmani et al. (2022) to describe flexibilities. In more detail, we consider EVs to increase the 
flexibility of initially stationary load profiles of industrial processes. Overall, while previous studies have 
shown the feasibility of V2F, the need to evaluate how a combination of energy flexibilities of production 
processes and EVs provide additional energy flexibility remains omnipresent. 

Methodology 
In this section we provide an overview of our optimization model for the combined management of 
industrial and EV flexibility. First, we highlight the mathematical formulation of our model and present the 
constraints related to EV charging and flexible industrial loads (all sets, parameters, and variables are 
introduced in detail in the appendix). In addition, we provide further details of the case study conducted, 
i.e., focusing on the input data used and the implementation of the model itself (utilizing the Gurobi solver). 

Formulation of the Optimization Problem  

Objective Function 

The core of the proposed MILP is the objective function, which quantifies the economic potential of a 
flexibility combination. The objective function (Eq. (1)) minimizes the net operational costs over the given 
time horizon T. The net operational costs are (1) electricity cost from the purchase of electricity from the 
grid 𝑝! and (2) activation cost 𝑎𝑐" incurred due to the activation of the flexible loads	𝐹	minus (3) revenues 
from the electricity fed into the grid 𝑟!. 

min					∆𝑡 ∙-(𝑃!
#$%&,()! ∙ 𝑝! − 𝑃!

#$%&,%* ∙ 𝑟!

|,|

!-.

+-𝑎𝑐" ∙ 𝑠𝑡𝑎𝑟𝑡",!)
|/|

"-.

 (1) 

Constraints Related to the Power Balance and Grid Connection 

To ensure that generation and consumption of electricity are equal in every time period, the total amount 
of electricity required for EV charging, flexible loads, and self-consumption must match the power drawn 
from the grid minus the power that is being fed into the grid (Eq. (2)). In addition, Eq. (3a) and (3b) ensure 
that the power fed into the grid is lower than the maximum power of the grid connection point and that 
withdrawing and injecting power simultaneously from/into the grid is not possible.  

𝑃!
#$%&,()! − 𝑃!

#$%&,%* = - - 𝑃0,1,!02 +-𝑃",!
"345 + 5𝑃!0(*6! − 𝑃!

643"6
|/|

"-.

|786|

1-.

|92:!|

0-.

	∀	𝑡 ∈ 𝑇 (2) 

0 ≤ 𝑃!
#$%&,%* ≤ 𝑃;9<,=>5 ∙ 𝑓𝑒𝑒𝑑𝐼𝑛!	∀	𝑡 ∈ 𝑇 (3a) 

0 ≤ 𝑃!
#$%&,()! ≤ (−𝑃;9<,=%*) ∙ (1 − 𝑓𝑒𝑒𝑑𝐼𝑛!)	∀	𝑡 ∈ 𝑇 (3b) 
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Constraints Related to the Electric Vehicle Charging  

Regarding relevant EV constraints, we base our work on Haupt et al. (2020), who implemented a MILP 
model for EV scheduling in charging hub microgrids. Eqs. (4a) - (4d) model the physical constraints of EV 
batteries (Haupt et al., 2020). Eq. (4a) and Eq. (4b) define the relationship between the SoC in 𝑡 and the 
SoC in 𝑡 − 1. The SoC changes in one interval by the energy charged/discharged in relation to the nominal 
battery capacity of the EV. This change in SoC depends on both the (dis-)charging power of the charging 
station (𝑃0,1,!&02) 𝑃0,1,!02  as well as the (dis-)charging efficiency (𝜂1&%6) 𝜂102 (Eq. (4b)).  

𝑆𝑜𝐶1,! = 𝑆𝑜𝐶1,!?. + ∆𝑆𝑜𝐶1,!?.	∀	𝑡 ∈ 𝑇	\	{1}, 𝑣 ∈ 𝐸𝑉𝑠 (4a) 

∆𝑆𝑜𝐶1,! =
∆𝑡 ∙ M𝜂102 ∙ ∑ 𝑃0,1,!02 − 1

𝜂1&%6
∙ ∑ 𝑃0,1,!&02|92:!|

0-.
|92:!|
0-. O

𝐶1
	∀	𝑡 ∈ 𝑇, 𝑣 ∈ 𝐸𝑉𝑠 (4b) 

In addition, according to Eq. (5a), the SoC of each EV must remain between a lower (𝑆𝑜𝐶1=%*) and an upper 
limit (𝑆𝑜𝐶1=>5) and we force the charging/discharging power used for charging to be between the minimum 
and maximum power value of the EV in Eq. (5b) and (5c).  

𝑆𝑜𝐶1=%* ≤ 𝑆𝑜𝐶1,! ≤ 𝑆𝑜𝐶1=>5	∀	𝑡 ∈ 𝑇, 𝑣 ∈ 𝐸𝑉𝑠 (5a) 

𝑃102,=%* ∙ 𝐶ℎ0,1,! ≤ 𝑃0,1,!02 ≤ 𝑃102,=>5 ∙ 𝐶ℎ0,1,!	∀	𝑡 ∈ 𝑇, 𝑣 ∈ 𝐸𝑉𝑠, 𝑐 ∈ 𝐶ℎ𝑆𝑡 (5b) 

𝑃1&02,=%* ∙ 𝑑𝐶ℎ0,1,! ≤ 𝑃0,1,!&02 ≤ 𝑃1&02,=>5 ∙ 𝑑𝐶ℎ0,1,!	∀	𝑡 ∈ 𝑇, 𝑣 ∈ 𝐸𝑉𝑠, 𝑐 ∈ 𝐶ℎ𝑆𝑡 (5c) 

Based on Haupt et al. (2020), we model the interaction between EVs and charging stations using Eqs. (6a) 
- (7b). Eq. (6a), for example, requires that an EV can only be charged if it is on site in time 𝑡, indicated by 
the parameter 𝑂𝑛𝑆𝑖𝑡𝑒1,!. The allocation of the EVs to the charging stations is governed by Eqs. (6b) - (6d), 
ensuring equal distribution of EVs among the charging stations and guaranteeing that each station can 
accommodate only one EV for charging/discharging in every given time interval.  

- 𝐶ℎ𝐴𝑠𝑠𝑖𝑔𝑛0,1,!

|92:!|

0-.

= 𝑜𝑛𝑆𝑖𝑡𝑒1,!			

∀	𝑡 ∈ 𝑇, 𝑣 ∈ 𝐸𝑉𝑠 

(6a) - 𝐶ℎ𝐴𝑠𝑠𝑖𝑔𝑛0,1,! ≤ 1
|786|

1-.

		

∀	𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶ℎ𝑆𝑡 

(6b) 

𝐶ℎ0,1,! + 𝑑𝐶ℎ0,1,! 	≤ 	𝐶ℎ𝐴𝑠𝑠𝑖𝑔𝑛0,1,!	∀	𝑡 ∈ 𝑇, 𝑣 ∈ 𝐸𝑉𝑠, 𝑐 ∈ 𝐶ℎ𝑆𝑡 (6c) 

𝐶ℎ𝐴𝑠𝑠𝑖𝑔𝑛0,1,!?. + 𝑜𝑛𝑆𝑖𝑡𝑒1,! − 1 ≤ 𝐶ℎ𝐴𝑠𝑠𝑖𝑔𝑛0,1,!	∀	𝑡 ∈ 𝑇\	{1}, 𝑣 ∈ 𝐸𝑉𝑠, 𝑐 ∈ 𝐶ℎ𝑆𝑡 (6d) 

Similar to the power limitations imposed on EVs (Eq. (5a) and (5b)), we force the charging/discharging 
power used for charging to be between a minimum and maximum power value (Eq. (7a) and (7b)).  

𝑃002,=%* ∙ 𝐶ℎ0,1,! ≤ 𝑃0,1,!02 ≤ 𝑃002,=>5 ∙ 𝐶ℎ0,1,!	∀	𝑡 ∈ 𝑇, 𝑣 ∈ 𝐸𝑉𝑠, 𝑐 ∈ 𝐶ℎ𝑆𝑡 (7a) 

𝑃0&02,=%* ∙ 𝑑𝐶ℎ0,1,! ≤ 𝑃0,1,!&02 ≤ 𝑃0&02,=>5 ∙ 𝑑𝐶ℎ0,1,!	∀	𝑡 ∈ 𝑇, 𝑣 ∈ 𝐸𝑉𝑠, 𝑐 ∈ 𝐶ℎ𝑆𝑡 (7b) 

Constraints Related to the Flexible Industrial Loads  

Finally, for the constraints relating to the flexible loads (Eqs. (8) - (16)), we use the EFDM by Schott et al. 
(2019). Accordingly, deviations of flexible loads from a “normal” (i.e., ex-ante planned) operating point are 
depicted by power states, which describe the admissible power levels of the plateaus, i.e., during holding 
periods (Schott et al., 2019). Deviations of flexible loads are positive in the load increase type and negative 
in the load decrease type (Bahmani et al., 2022). More formally, Eq. (8a) ensures an operation under a 
lower and an upper power deviation, where 𝑜𝑛",! is a binary variable indicating whether flexible load 𝑓 is 
active in time 𝑡. Meanwhile, Eq. (8b) ensures that the residual industrial load, i.e., the constant base load 
adjusted by deployed flexible loads, remains a consumer of electricity at all times. 
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𝑜𝑛",! ∙ 𝑃"
"345,=%* ≤ 𝑃",!

"345 ≤ 𝑃"
"345,=>5 ∙ 𝑜𝑛",!		

∀	𝑡 ∈ 𝑇, 𝑓 ∈ 𝐹 
(8a) 𝑃!0(*6! +-𝑃",!

"345
|/|

"-.

≥ 0	∀	𝑡 ∈ 𝑇 (8b) 

For flexible loads that can freely operate under any power state, we only use Eq. (8a). However, some 
flexible loads might require to only operate at specific power states. In case discrete power states are 
required (Eq. (9a) and (9b)), 𝑠𝑡𝑎𝑡𝑒𝑠" accounts for the number of permissible power states between 𝑃"

"345,=%* 
and 𝑃"

"345,=>5 and the integer variable 𝑝𝑆𝑡𝑎𝑡𝑒",! controls the actual power state value.  

𝑃",!
"345 = 𝑜𝑛",! ∙ 𝑃"

"345,=%* +
𝑃"
"345,=>5 − 𝑃"

"345,=%*

𝑠𝑡𝑎𝑡𝑒𝑠" + 1
∙ 𝑝𝑆𝑡𝑎𝑡𝑒",!	∀	𝑡 ∈ 𝑇, 𝑓 ∈ 𝐹 (9a) 

0 ≤ 𝑝𝑆𝑡𝑎𝑡𝑒",! ≤ 5𝑠𝑡𝑎𝑡𝑒𝑠" + 16 ∙ 𝑜𝑛",!	∀	𝑡 ∈ 𝑇, 𝑓 ∈ 𝐹 (9b) 

In case unique power states are required, i.e., the flexible loads can only operate in one unique power state, 
Eq. (10a) and Eq. (10b) allow for only one increase and one decrease in the power in the flexibility’s start-
up and shut-down time, resulting in a single power state during flexibility activation.  

𝑃",!
"345 − 𝑃",!?.

"345 ≤ 𝑃"
"345,=>5𝑠𝑡𝑎𝑟𝑡",!		

∀	𝑡 ∈ 𝑇, 𝑓 ∈ 𝐹 
(10a) 𝑃",!?.

"345 − 𝑃",!
"345 ≤ 𝑃"

"345,=>5𝑒𝑛𝑑",!		
∀	𝑡 ∈ 𝑇, 𝑓 ∈ 𝐹 

(10b) 

Additional constraints (Eqs. (11) - (15)) define the validity, holding duration, regeneration duration, and 
usage of flexible loads. The validity constraint, represented by Eq. (11), requires flexible load 𝑓 to only be 
active at time 𝑡, if it is within the bounds of validity. This is important because some processes may not be 
disrupted, for example, since certain delivery obligations take priority over load utilization (Schott et al., 
2019). We impede the flexible load activation and deactivation at the same time using Eq. (12). The holding 
duration constraint (Eq. (13)) imposes limits on the duration for which the flexible loads operate at specified 
power levels, with minimum and maximum bounds represented by ℎ𝑑"=%*  and ℎ𝑑"=>5 . The regeneration 
duration constraint (Eq. (14)) describes the time limitation 𝑟𝑑"  to activate a load after deactivation. 
Furthermore, the number of activations of each flexible load is limited through the usage constraint (Eq. 
(15)), where 𝑢𝑠𝑎𝑔𝑒"=%* and 𝑢𝑠𝑎𝑔𝑒"=>5 define the usage limits for flexible load 𝑓 over the planning horizon.  

𝑜𝑛",! ≤ 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦",!	∀	𝑡 ∈ 𝑇, 𝑓 ∈ 𝐹 (11) 𝑠𝑡𝑎𝑟𝑡",! + 𝑒𝑛𝑑",! ≤ 1	∀	𝑡 ∈ 𝑇, 𝑓 ∈ 𝐹 (12) 

𝑠𝑡𝑎𝑟𝑡",! ≤ - 𝑒𝑛𝑑",!@6

ABC	{|,|,2&!
"#$}

6-2&!
"%&

		

∀	𝑡 ∈ 𝑇: Z𝑡 + ℎ𝑑"=%*Z 	≤ |𝑇|, 𝑓 ∈ 𝐹 

(13) - 51− 𝑜𝑛",66 ≥ 𝑟𝑑" ∙ 𝑒𝑛𝑑",!

ABC	{|,|,!@$&!?.}

6-!

		

∀	𝑡 ∈ 𝑇, 𝑓 ∈ 𝐹 

(14) 

𝑢𝑠𝑎𝑔𝑒"=%* ≤-𝑠𝑡𝑎𝑟𝑡",! ≤ 𝑢𝑠𝑎𝑔𝑒"=>5
|,|

!-.

∀	𝑓 ∈ 𝐹 (15) 

Finally, the relationship between the binary variables 𝑜𝑛",!, 𝑠𝑡𝑎𝑟𝑡",!, and 𝑒𝑛𝑑",!, which indicate the status, 
starting time, and ending time of the flexible load, respectively, is described by Eq. (16). 

𝑜𝑛",! − 𝑜𝑛",!?. = 𝑠𝑡𝑎𝑟𝑡",! − 𝑒𝑛𝑑",!	∀	𝑡 ∈ 𝑇, 𝑓 ∈ 𝐹 (16) 

Description of the Conducted Case Study 

In the following, we present the setup and input parameters for the evaluation of our approach. The 
simulation environment consists of two central modules, specifically a planning module and an execution 
module. The planning module determines a portfolio of control signals for each future period of the current 
planning horizon for both the charging infrastructure and the energy flexibilities of the industrial processes. 
The execution module operates based on the outputs of the planning module and performs state changes 
to the simulation environment in each period of the planning horizon according to the control signals 
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formulated for that period in the current version of the execution plan. The implementation of the planning 
module resorts to the formulated MILP. We assume complete knowledge concerning two areas: On the one 
hand, complete knowledge of the realizations of electricity prices and electricity generation of photovoltaic 
(PV) plants is assumed. While this assumption leads to a necessary further development of the model, 
including forecasts of electricity prices and generation, it significantly reduces the complexity of the 
optimization model and the required computational effort. On the other hand, the planning module has 
complete knowledge of the distributions, given by the respective probability density functions, of the 
occurrence of charging-related events such as the arrival or departure time of the EVs. Due to the stochastic 
nature of some parameters, deviations between the expected and actual realization of random variables are 
inherent. To incorporate stochasticity, we follow the approach of dynamic programming. While the 
execution module is active in every period, a run of the planning module occurs exclusively in periods in 
which a change in the planning-relevant parameters of the simulation environment compared to the 
previous period can be observed. Such a change can be triggered by the arrival and connection of an EV to 
the charging infrastructure. If no change is observed, the execution plan used in the previous period is still 
valid in the current period and remains optimal.  
In our case study, the simulation environment describes a medium-sized industrial company that has a base 
consumption 𝑃G>64(𝑡) of its various industrial manufacturing activities. The characteristics of the internal 
energy-intensive processes allow the use of various energy flexibility measures, which lead to a deviation of 
the actual load of the manufacturing activities from the base consumption by 𝑃"345(𝑡). In addition, the 
company operates its own PV plant (which generates an output of 𝑃H1(𝑡)) and a charging infrastructure, 
where EVs can be charged and discharged both unidirectionally and bidirectionally. The residual load of 
the charging park is denoted as 𝑃02(𝑡) . In more detail, we consider the following input data for the 
optimization. To quantify the electricity price 𝑝!, we used actual market data from the European power 
exchange (EPEX SPOT) for the German day-ahead market of the year 2022. For the emission factors that 
are used for an ecological evaluation of our results, we apply hourly data on the specific GHG emissions of 
the German electricity mix (Forschungsstelle für Energiewirtschaft (FfE), 2022). Furthermore, we model 
the power generation of the PV plant based on a real-world dataset from a German medium-sized company 
(energy and building technology industry) for October 2022. For the simulation, we consider a time frame 
of five working days, beginning on Monday, October 10th, 2022. Thereby, each day is handled separately 
and acts as a self-contained planning horizon. The MILP within the planning module considers discrete 
periods of 15-minute intervals between the moment of planning and the end of the respective day / planning 
horizon. To model the base load of the manufacturing company, we assume production to take place 
between 9:00 a.m. and 6:00 p.m. We also assume a constant (ex-ante) demand of	𝑃G>64(𝑡) = 500	𝑘𝑊 for all 
production-related processes in this period (9 a.m. < 𝑡 < 6 p.m.). Furthermore, we consider five different 
flexible loads as depicted in Table 1 and assume the execution of flexible loads to be valid, i.e., 𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦",! =
1 during the daily time of production. 

 Deviation Type Power Usage Number Holding Duration Regeneration Activation Cost 

Unit - kW - 15min 15min € 

Flexible Load 1 Decrease [0,125] [0,3] [4,12] 0 0 

Flexible Load 2 Decrease [250,250] [0,2] [4,8] 12 0 

Flexible Load 3 Decrease [350,475] [0,1] [4,4] 0 0 

Flexible Load 4 Decrease [62.5,187.5] [0,1] [8,8] 0 15 

Flexible Load 5 Increase [62.5,125] [0,3] [4,12] 0 0 

Table 1. Flexible Loads Used in the Simulation (adapted from Bahmani et al. (2022)) 

For the modeled EVs, we assume a fleet of ten privately-owned and ten company-owned EVs. We 
distinguish the two types of EVs in terms of their ability to be charged bidirectionally. Privately-owned 
vehicles can only be charged unidirectionally, as we assume employees to not want the capacity or the 
lifespan of their private EV batteries to suffer from possible negative effects of bidirectional charging. 
Company-owned vehicles, on the other hand, can be charged bidirectionally. The individual vehicles’ 
battery capacity and (dis)charging power is quantified in Table 2 for all EVs.  
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 Charging Power Battery Capacity Unidirectional Bidirectional 

Unit kW kWh - - 

Tesla Model S [0,250] 100 2 4 

VW ID.3 [0,120] 58 4 4 

Renault Zoe Z.E [0,50] 52 4 2 

Table 2. Types of EVs Used in the Simulation 

We model the arrival (departure) time of each EV as a gamma distribution with a shape parameter 𝛼 = 2 
and a scale parameter 𝛽 = 1 within a given time range from 7:00 a.m. to 11:00 a.m. (4:00 p.m. to 8:00 
p.m.). The arrival SoC is normally distributed with a mean 𝜇 = 0.5 and standard deviation 𝜎 = 0.13 within 
the interval [0, 1], while the target SoC at the expected period of departure is triangularly distributed 
between the respective arrival SoC and fully charged state of 100% with a mode of �̅�I = 1. Concerning the 
charging infrastructure, we consider 10 unidirectional and 10 bidirectional charging stations with a 
respective charging/discharging power of 11kW (2 stations), 22kW (4 stations) and 150kW (4 stations). 
Furthermore, across all possible combinations of EVs and charging stations, we assume the 
charging/discharging efficiency to be equal to the industry reference value of 𝜂102 = 𝜂1&%6 = 90% (Roth et al., 
2019). Finally, we also consider consumption and feed-in limitations at the grid connection point of 
𝑃!
;9<,=>5 = 1000𝑘𝑊 and 𝑃!

;9<,=%* = −1000𝑘𝑊 as well as a constant remuneration for feed-in of 𝑟! =
J.JL€
NO2

 
(Bayerische Landesanstalt für Landwirtschaft, 2022). To ensure a certain degree of explanatory power 
considering the stochastic properties of the model, we conducted n=10 runs over the aforementioned 5-day 
period.  

Results 
To quantify the additional flexibility realized under our approach, we define an appropriate point of 
comparison based on the status quo in research and practice. In particular, our benchmark assumes a 
separate consideration of smart charging and industrial load management, i.e., a sequential approach was 
adopted: Given the particular impact of flexible load management on industrial processes, our benchmark 
initially optimizes industrial flexible load usage. Subsequently, these results provide input parameters for 
the optimal charging and discharging operations of the fleet of EVs. Note that our proposed MILP can be 
divided into two sets of constraints that intersect only in Constraints (3), (4a), and (4b). Consequently, the 
resulting two separate MILPs constitute the basis for the sequential approach, which aims to quantify the 
benchmark used. In the following, we will refer to the approach presented in the penultimate section as the 
“combined approach”, while our benchmark will be named “sequential approach”. These two approaches 
were tested in the same simulation environment as outlined in the previous section. Corresponding results 
are summarized in Table 3. 

 Combined Approach Sequential Approach Difference 

𝐸[𝑐𝑜𝑠𝑡] 980.23	€ 1,094.79	€ 11.69% 
𝜎[𝑐𝑜𝑠𝑡] 95.22€ 68.37	€ −28.21% 

𝐸[𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛] 2,738.33	𝑘𝑔 2,947.75	𝑘𝑔 7.65% 
𝜎[𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛] 196.53	𝑘𝑔 158.98	𝑘𝑔 −19.11% 

Table 3. Results of 10 Runs of the Simulation Model for Both Planning Approaches  
Compared to the sequential approach (benchmark), costs can be reduced significantly by 11.69% when 
using the combined approach. At the same time, a significant reduction in emissions by an average of 7.65% 
can be realized. Especially for energy-intensive companies, whose energy costs account for up to 40% of 
their total production costs (Sauer et al., 2019, p. 109), such cost reduction can have a significant impact on 
profit margins and overall competitiveness. Considering the ongoing electrification of the energy sector and 
reduction of the dependence on fossil fuels, the ecologic perspective will gain even more importance in the 
coming years: The fact that a reduction in costs is accompanied by a decrease in emissions is an important 
aspect when jointly increasing economic competitiveness and fighting against climate change at the same 
time. Here, especially the degree of self-consumption and the CO2 footprint of the external electricity supply 
plays a major role. Since an emission factor of zero kg CO2-eq per kWh was assumed for the installed PV 
system, and direct GHG emissions resulting from the manufacturing processes were assumed to be 
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immutable, the purchase of electricity on the day-ahead spot market (external electricity supply) represents 
the only source of emissions. The time-varying emissions per kWh depend on the current electricity mix 
and the specific emissions of the different energy sources. Differences in costs and emissions of both 
approaches can attributed to two aspects: First, the ability to shift the grid-effective electricity consumption 
can be utilized to exploit significant changes in spot market prices, e.g., due to volatile supply of RES, and, 
consequently, reduce procurement costs. Those distinct changes in prices result from fluctuating power 
generation as RES, such as wind turbines and PV, are limited in their ability to adjust to current electricity 
demand (Bank et al., 2021). Therefore, this is a characteristic of electricity markets with a relatively high 
share of RES in the electricity mix (Sauer et al., 2019). Secondly, utilizing flexible loads and storage capacity 
of electric vehicles, the corporate electricity demand can be adjusted to self-generation to increase self-
consumption and thereby reduce the power demand to the grid. Overall, a combined consideration of 
flexible industrial electricity consumption and company-owned EV charging infrastructure can enhance the 
competitiveness of companies and contribute to emission reduction and climate neutrality goals. 
Consequently, entrepreneurial efforts are fostered in two main dimensions.  

Discussion and Conclusion 
Lastly, we want to critically reflect our study's findings regarding the combination of energy flexibilities 
from industrial processes and EV charging. Our approach allows to quantify the flexibility benefits, with 
our findings in fact supporting the expected increase in economic and ecological flexibility potentials. 
However, it is essential to acknowledge the need for suitable metrics to quantify the potential of combined 
solutions. Future research should, therefore, focus on developing precise evaluation methods, such as 
diverse ecological metrics, and investigate the optimal planning for various sectors to assess the 
generalizability of our findings. Our model for EV charging involves several assumptions to reduce 
complexity. One such assumption is the constant maximum charging power, which has limitations, 
particularly if one were to consider local temperature variations in Germany, as the ideal temperature range 
for maximum charging power efficiency, proposed by Lindgren et al. (2016), is near 20 °C. Furthermore, 
our research was not based on real-world arrival and departure data, but gamma distributions were used 
instead. Moreover, in practice, a flexible reduction in load is often accompanied by a compensatory increase 
in load (Bahmani et al., 2022). However, due to problem complexity, no dependencies between flexible 
loads were considered in our research, thus making it possible to obtain results in a reasonable time span. 
Additionally, we assumed a certain level of EV penetration, which is above the current international level 
(Xue et al., 2021). This particular assumption may impact the applicability of our findings to real-world 
scenarios with different EV adoption rates. However, considering the rapid adoption of EVs, we anticipate 
that our assumption will soon align with the actual market situation.  
We also want to discuss the ex-ante information of energy prices in energy planning and decision-making. 
For a real-world implementation, incorporating information uncertainty in future research can significantly 
improve transferability to and applicability in practice. This enables stakeholders to make more informed 
decisions on optimizing energy consumption and reducing costs. Additionally, our paper does not delve 
into the costs of integrating our findings, monitoring their function, or determining the thresholds that 
would make the adoption of our findings desirable for companies. From a policy perspective, incentivizing 
the adoption of combined approaches could encourage companies to reduce energy costs and carbon 
emissions. It is vital to analyze policy measures that support synergetic planning and remove regulatory 
barriers to facilitate the uptake of such strategies. In conclusion, our study, despite its limitations, 
contributes to a better understanding of untapped flexibility potentials in electrified mobility and energy-
intensive industries as we transition to a sustainable energy landscape. By critically examining our findings 
and addressing shortcomings, we hope to inspire further research and policy development in this area. 

Appendix  

Sets and Indices 
𝑡  Index of time from 1,… , |𝑇| 

𝑣  Index of EVs from 1,… , |𝐸𝑉𝑠| 

𝑐  Index of charging stations from 
1,… , |𝐶ℎ𝑆𝑡| 

𝜂!"# ∈ [0,1] Charging efficiency of the EV battery 

𝜂!$%&  ∈ [0,1] Discharging efficiency of the EV battery 

𝐶!  ∈ ℝ'( Battery capacity of EV 𝑣 [𝑀𝑊ℎ] 

𝑆𝑜𝐶!,*+%, ∈ [0,1] Minimum State-of-Charge of EV 𝑣 in 
time 𝑡 
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𝑓-.&  
Index of flexible loads representing a 
load increase from 1,… , |𝐹-.&|  

𝑓,/0  Index of flexible loads representing a 
load decrease from 1,… , |𝐹,/0|  

𝑓 Index of flexible loads from 1,… , |𝐹| 
where 𝐹 = 𝐹,/0 ∪ 𝐹-.& 

Variables Related to EV Charging 
𝑃",!,*"#  ∈ ℝ'( Charging power of charging station 𝑐 in 

time 𝑡 [𝑀𝑊] 
𝑃",!,*$"#  ∈ ℝ'( Discharging power of charging station 𝑐 

in time 𝑡 [𝑀𝑊] 
𝑆𝑜𝐶!,* ∈ [0,1] State-of-Charge of EV 𝑣 in time 𝑡  

𝐶ℎ",!,* ∈ {0; 1}	 Indicates if EV 𝑣 is charged at charging 
station 𝑐 in time 𝑡 

𝑑𝐶ℎ",!,* ∈ {0; 1} Indicates if EV 𝑣 is discharged at 
charging station 𝑐 in time 𝑡 

𝐶ℎ𝐴𝑠𝑠𝑖𝑔𝑛",!,* ∈ {0; 1} Indicates if EV 𝑣 is assigned to charging 
station 𝑐 in time 𝑡 

Variables Related to Flexible Industrial Loads 
𝑃1,*
12/3	 ∈ ℝ	 Load of flexible load 𝑓 in time 𝑡 [𝑀𝑊] 

𝑠𝑡𝑎𝑟𝑡1,* ∈ {0; 1} Indicates if flexible load 𝑓 is 
activated/started in time 𝑡 

𝑒𝑛𝑑1,* ∈ {0; 1} Indicates if flexible load 𝑓 is shut 
down/ended in time 𝑡 

𝑜𝑛1,* ∈ {0; 1} Indicates if flexible load 𝑓 is active in 
time 𝑡 

𝑝𝑆𝑡𝑎𝑡𝑒1,* ∈ ℕ Number of power state of flexible load 𝑓 
at time 𝑡 

Variables Related to Power Balance & Grid Connection 

𝑃*
04%$,%, ∈ ℝ'( Power into the grid in time 𝑡 [𝑀𝑊] 

𝑃*
04%$,.5* ∈ ℝ'( Power out of the grid in time 𝑡 [𝑀𝑊] 

𝑓𝑒𝑒𝑑𝐼𝑛* ∈ {0; 1} Indicates if power is feed-in in time 𝑡 

Parameters Related to EV Charging 

𝑃!
"#,+63 ∈ ℝ'(  Maximum charging power of EV 𝑣 

[𝑀𝑊] 

𝑃!
"#,+%, ∈ ℝ'(  Minimum charging power of EV 𝑣 [𝑀𝑊] 

𝑃!
$"#,+63 ∈ ℝ'(  Maximum discharging power of EV 𝑣 

[𝑀𝑊] 

𝑃!
$"#,+%, ∈ ℝ'(  Minimum discharging power of EV 𝑣 

[𝑀𝑊] 
𝑆𝑜𝐶!+63 ∈ [0,1]  Maximum State-of-Charge of EV 𝑣 

𝑆𝑜𝐶!+%, ∈ [0,1]  Minimum State-of-Charge of EV 𝑣  
 

𝑃"
"#,+63 ∈ ℝ'( Maximum charging power of charging 

station 𝑐 [𝑀𝑊] 

𝑃"
"#,+%, ∈ ℝ'( Minimum charging power of charging 

station 𝑐 [𝑀𝑊] 

𝑃"
$"#,+63 ∈ ℝ'( Maximum discharging power of charging 

station 𝑐 [𝑀𝑊] 

𝑃"
$"#,+%, ∈ ℝ'( Minimum discharging power of charging 

station 𝑐 [𝑀𝑊] 
𝑂𝑛𝑆𝑖𝑡𝑒!,* ∈ {0; 1} Indicates if EV 𝑣 is expected to be on site 

in time 𝑡 

Parameters Related to the Flexible Industrial Loads 
𝑎𝑐1 ∈ ℝ'( Activation cost of flexible load 𝑓 [€]	

ℎ𝑑1+63 ∈ ℕ  Maximum holding duration of flexible 
load 𝑓 [h] 

ℎ𝑑1+%, ∈ ℕ  Minimum holding duration of flexible 
load 𝑓 [h] 

𝑃1
12/3,+63 ∈ ℝ  Maximum power deviation of flexible 

load 𝑓 [𝑀𝑊] 

𝑃1
12/3,+%, ∈ ℝ  Minimum power deviation of flexible 

load 𝑓	[𝑀𝑊] 
𝑟𝑑1+%, ∈ ℕ'  Minimum regeneration duration of 

flexible load 𝑓 [h] 
𝑠𝑡𝑎𝑡𝑒𝑠1 ∈ ℕ  Number of permissible power states of 

flexible load 𝑓 
𝑢𝑠𝑎𝑔𝑒1+63 ∈ ℕ  Maximum number of usages in time 𝑡 

𝑢𝑠𝑎𝑔𝑒1+%, ∈ ℕ'  Minimum number of usages in time 𝑡 

𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦1,* ∈ {0; 1}  Indicates if usage of flexible load 𝑓 is 
valid in time 𝑡 

Parameters Related to the Power Balance & Grid Connection 

𝑃*
789,+63  ∈ ℝ'(  Maximum power at grid connection point 

in time 𝑡 [𝑀𝑊] 

𝑃*
789,+%, ∈ ℝ':  Minimum power at grid connection point 

in time 𝑡 [𝑀𝑊] 
𝑃*".,&* ∈ ℝ'(  Constant demand in time 𝑡 [𝑀𝑊] 

𝑃*
&/21 ∈ ℝ'(  Self-generation in time 𝑡 [𝑀𝑊] 

General Parameters 
∆𝑡 ∈ ℝ(  Length of time interval [𝑡%; 𝑡%(;] 

𝑒*
04%$ ∈ ℝ'(  Emission factor of grid power in time 𝑡 

[𝑘𝑔𝐶𝑂<𝑒𝑞/𝑀𝑊ℎ] 

𝑒*
&/21 ∈ ℝ'(  Emission factor of self-generation in time 

𝑡 [𝑘𝑔𝐶𝑂<𝑒𝑞/𝑀𝑊ℎ] 

𝑝* ∈ ℝ  Dynamic electricity price in time 𝑡 
[€/𝑀𝑊ℎ] 

𝑟* ∈ ℝ'(  Feed-in remuneration in time 𝑡 [€/𝑀𝑊ℎ] 
 

Table 4. Nomenclature 
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