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Abstract. Nowadays, organizations face severe operational risks when executing 

their business processes. Some reasons are the ever more complex and dynamic 

business environment as well as the organic nature of business processes. Taking 

a risk perspective on the business process management (BPM) lifecycle has thus 

been recognized as an essential research stream. Despite profound knowledge on 

risk-aware BPM with a focus on process design, existing approaches for real-

time risk monitoring treat instances as isolated when detecting risks. They do not 

propagate risk information to other instances in order to support early risk detec-

tion. To address this gap, we propose an approach for predictive risk monitoring 

(PRISM). This approach automatically propagates risk information, which has 

been detected via risk sensors, across similar running instances of the same pro-

cess in real-time. We demonstrate PRISM’s capability of predictive risk moni-

toring by applying it in the context of a real-world scenario. 

Keywords: Business Process Management, Risk-aware BPM, Risk Propaga-

tion, Predictive Risk Monitoring  

1 Introduction 

The pressing need for organizations to increase productivity, to achieve operational ex-

cellence, and to save costs has been and still is one of the driving forces for the adoption 

of business process management (BPM) methods and technologies [1]. Due to an in-

creasingly complex and dynamic business environment as well as the organic nature of 

processes, organizations are exposed to severe operational risks (e.g., the violation of 

the four-eye principle or a payment default of a customer engaged in multiple instances) 

when executing their business processes [2, 3]. 

In the attempt of solving this problem, industry and academia have proposed several 

solutions. From an industry perspective, there are legislative initiatives such as Basel II 

[4] and Sarbanes-Oxley Act [5]. In the academic world, previous research recognized 

the importance of incorporating a risk perspective in all activities of the BPM lifecycle 



[3, 6, 7]. A detailed analysis of research conducted in the area of risk-aware BPM is 

presented by Suriadi et al. [8]. Accordingly, the effort of the academic world shows a 

bias toward the process design phase of the BPM lifecycle [9]. Beyond risk-aware pro-

cess design, there are also works that take a risk perspective when valuating and com-

paring process models [10, 11]. Therefore, Suriadi et al. [8] particularly highlight the 

need for research on risk-informed process execution. This need is supported by Recker 

and Mendling [12], who point to a lack of research on real-time process monitoring and 

controlling. Although recent studies attempt to address this gap regarding risk-informed 

process execution and monitoring via approaches for real-time risk or deviance moni-

toring [13, 14], risk mitigation [15], and the avoidance of risk during runtime [16], the 

timely detection of process risks still is an open challenge. 

Current approaches to real-time risk detection monitor running instances via sensors 

[13]. Such sensors operate at the level of process instances, using information about 

running instances and log data from completed process instances. Although risk even-

tuation in process instances is not necessarily affected by other running instances, ex-

ternal factors (e.g., customer behavior, characteristics of process inputs) play an influ-

ential role for the eventuation of risks. Due to such factors, risk monitoring at process 

instance-level may not be sufficient when instances are considered in isolation [17]. To 

the best of our knowledge, there are no approaches that share risk information across 

multiple process instances for the predictive monitoring and early detection of risks.  

Against this background, we propose an approach for predictive risk monitoring 

(PRISM), which builds on and extends the work of Conforti et al. [13]. The PRISM 

approach aims at supporting early risk detection by automatically propagating risk in-

formation, which has been detected by sensors, across similar running instances of the 

same process in real-time. To do so, the PRISM approach uses a similarity-weighted 

process instance graph (PING) and a risk propagation algorithm.   

The remainder of this paper is organized as follows: Section 2 discusses related work 

in the areas of risk-aware BPM and process similarity. Section 3 presents the PRISM 

approach, elaborating on the PING and the risk propagation algorithm. Section 4 illus-

trates PRISM’s effectiveness when used in the context of a real-life scenario. Section 5 

concludes the paper, discusses limitations and future work. 

2 Theoretical Background and Preliminaries  

In this section, we compile theoretical background on risk-aware BPM and on previous 

work related to process similarity. 

2.1 Risk-aware Business Process Management 

Risk management techniques found their way into many different fields. At the strate-

gic level, risk management standards prescribe general guidelines for identifying, ana-

lyzing, evaluating, and handling risks [18, 19]. Though being of great importance, such 

guidelines are mostly meta-models, sketchy, and fail to provide specific guidance on 

how to operationalize risk management strategies in business processes. Conforti et al. 



[13, 15, 16] thus proposed to enrich the traditional BPM lifecycle [9] with elements of 

risk management. This enables the four phases of the BPM lifecycle, i.e., process de-

sign, process implementation, process enactment, and process analysis, to become risk-

aware. The resulting risk-aware BPM lifecycle is shown in Fig. 1. 

 

Fig. 1. Risk-aware BPM lifecycle [16] 

The risk-aware BPM lifecycle starts with the risk identification phase. In this phase, 

risks that may eventuate during the execution of a business process are identified. The 

output of this phase is a set of risks, expressed as risk conditions, which are then mapped 

to process model-specific aspects in the process design phase. This mapping results in 

risk-annotated process models. In the process implementation phase, a more detailed 

assignment of risks and faults to specific aspects of a process model, e.g., the content 

of data variables and resource states, is conducted. A risk-aware process engine then 

executes this process model in the process enactment phase. Finally, based on the input 

of current and historical process data, risk conditions are analyzed in the process diag-

nosis phase, leading to risk-related improvements. 

Considering the risk-aware BPM lifecycle, most approaches proposed for risk-aware 

BPM fall into the design phase. Among these approaches, we can distinguish between 

approaches that focus on the analysis and modeling of process risks via new risk con-

structs [3, 20–22] or based on the use of existing risk analysis methods [6, 23–25]. We 

refer to the work of Suriadi et al. [8] for a comprehensive discussion. Regarding the 

process diagnosis phase, we find the works of Pika et al. [26] and Suriadi et al. [27], 

who analyze process data to retrieve risk information. Pika et al. [26] propose an ap-

proach that uses statistical analysis to predict overtime risks, whereas Suriadi et al. [27] 

use classification algorithms to conduct a root cause analysis of risks. 

In light of the need for research on risk-informed process execution/enactment [8], 

it is important to focus on risks that can be identified within the boundaries of a process. 

Thereby, a process risk is the chance of something happening that will impact the ob-

jectives of a process and is measured in terms of likelihood and consequence [28]. The 

work of Conforti et al. [13] focuses on real-time risk detection. The approach, which is 

based on sensors, detects risks via real-time monitoring of risk conditions. Though be-

ing capable of monitoring a process instance using current and historical information, 

sensors consider process instances as independent. This limits the capabilities of the 

approach since it is unable to detect the eventuation of process risks based on infor-

mation about process risks that eventuate in other instances. Nonetheless, it offers a 

good starting point for addressing the problem. 



2.2 Similarity Measures in BPM 

For the purpose of the PRISM approach, we compare process instances in order to de-

termine whether and how strongly a risk, which has been detected in one instance, in-

fluences other running instances of the same process. To compare process instances, it 

is necessary to measure the similarity of instances. In the literature, several approaches 

have been proposed and, in the area of BPM, we must distinguish between measuring 

similarities among process models [29–33] and process logs [34]. 

Similarities among process models can be categorized in structural similarities [29] 

and behavioral similarities [30, 31]. Approaches referring to structural similarities com-

pare two process models at structural level. This is achieved by determining the number 

of structural changes required (e.g., flows, gateways, and tasks) for two process models 

to match. Approaches that deal with the behavioral similarity of process models require 

more advanced techniques. Two process models are compared regarding the set of pos-

sible executions that can be generated using these models. A similar approach is used 

by similarity measurement that operates on process logs [35], while in this case the set 

of possible executions is already contained in the log. For these forms of similarity, two 

characteristics need to be kept in mind: first, instances belonging to the same process 

model make structural similarity pointless and, second, multiple completed instances 

are required in order to reasonably compare logs. 

As an approach for measuring the similarity of process logs, Song et al. [34] rely on 

trace profiles. Trace profiles are vectors, containing several items that describe the trace 

from a specific perspective (e.g., case attributes or involved tasks). Trace profiles build 

on historical data from process logs in order to obtain their information. In light of their 

multi-perspective vectorial representation, trace profiles can be easily compared using 

string similarity techniques [36, 37]. Song et al. [34] show how a similarity measure 

based on trace profiles enhances discovering process models. This is why the PRISM 

approach builds on the work of Song et al. [34]. 

3 The Predictive Risk Monitoring Approach  

We now present the PRISM approach that builds on and extends the work of Conforti 

et al. [13]. The approach encompasses a similarity-weighted PING and a risk propaga-

tion algorithm. For the sake of completeness, we first sketch the approach of Conforti 

et al. [13]. 

3.1 The Sensor-based Approach to Risk Detection 

In the sensor-based approach of Conforti et al. [13], a fault is an undesired state of a 

process (e.g., a process violating a service level agreement). In order to minimize the 

negative effects of faults, it is important to detect the risk of a fault as early as possible. 

Conforti et al. [13] achieve this through the use of digital risk sensors. However, the 

approach would also be suitable in the case of physical sensors [38]. 

Sensors are defined at design time on top of an executable process model. Each sen-

sor is associated with a risk condition that captures the situation in which the risk related 



to a distinct fault may occur. A risk condition combines a risk likelihood (henceforth 

referred to as risk 𝑟𝑖(𝑡) in instance 𝑖 at a given point in time 𝑡), i.e., the probability of 

the fault to occur, and a threshold 𝑇𝑅𝐸, i.e., a risk value that an organization is willing 

to tolerate. As process models can contain several sensors referring to different faults 

with individual risk conditions, each sensor must be treated separately. 

At execution time, when a new instance is created, the sensors associated with the 

process model are enabled. The sensors monitor the process instance by evaluating the 

associated risk condition. A risk condition is evaluated either based on a given sampling 

rate or on the occurrence of a specific event by looking into historical and current pro-

cess execution data. Finally, whenever a risk is detected the system automatically trig-

gers a notification to the process administrator, who will act accordingly. 

The PRISM approach builds on top of and extends the work of Conforti et al. [13]. 

It is based on the idea that similar process instances feature a similar risk exposure. We 

thus assume that identical instances have the same risk exposure. As other approaches 

(e.g., case-based reasoning or adaptive case management) rely on similarity measures 

to determine similar instances [39, 40], we adopted similarity as a proxy to estimate the 

risk exposure of other currently running instances. On this assumption, we use the sen-

sor-based detection of a risk in a distinct instance as a trigger for checking whether the 

risk is likely to eventuate in similar process instances, too. This is achieved by propa-

gating information about the detected risk from the process instance for which the risk 

has been detected to other currently running instances. To determine to which instances 

a detected risk should be propagated and how strongly the related effect should be, the 

PRISM approach compares different instances regarding their similarity. The risk prop-

agation triggers a manual evaluation of the corresponding sensor from the receiving 

instance, taking the propagated risk as well as the similarity between the source and the 

receiving instance as input for evaluating the risk condition. 

Fig. 2 illustrates the idea behind the PRISM approach for two running instances us-

ing a single sensor as example. In this example, the sensor is monitoring an unfulfill-

ment risk. This sensor relates to a situation where a process instance executes a distinct 

task too many times, with the related risk condition checking for loops. We assume that 

both instances here have a high risk exposure and are similar. In the following, we refer 

to instance 1 as source. Accordingly, the source’s unfulfillment risk sensor detects a 

risk that exceeds the given threshold at time 𝑡 = 2. This calculation is based on availa-

ble historical data (i.e., already executed log traces), enabling to analyze past executions 

of the process in focus. In Fig. 2, the bold dashed line from the source to instance 2 

visualizes the risk propagation, triggered by the detection of the unfulfillment risk. The 

propagation leads to rechecking the risk conditions in instance 2. In our example, the 

unfulfillment risk is detected in instance 2 triggered by the risk propagation. PRISM 

therefore enables detecting the unfulfillment risk in instance 2 earlier, i.e., in 𝑡 = 2 in-

stead of 𝑡 = 3, than the sensors of instance 2 would have done without risk propagation. 



 

 Fig. 2. Example of time advantage through the PRISM approach with two instances 

As there usually is more than one running instance of the same process, the PRISM 

approach propagates risk information among these instances to enable early risk detec-

tion. In order to perform the risk propagation, the PRISM approach uses a similarity-

weighted PING and a risk propagation algorithm whenever a sensor detects a risk. We 

introduce both concepts below. 

3.2 Similarity-weighted Process Instance Graph 

To propagate risk information among running instances of a process, we rely on a sim-

ilarity-weighted PING. The PING virtually links instances using their similarity as edge 

weights. The PING can be interpreted as a temporal snapshot of all process instances, 

which we use to determine whether and how strongly a risk detected in the source in-

stance influences other instances of the same process.  

Formally, the PING is a graph 𝑃𝐼𝑁𝐺 = (𝑉, 𝐸), where 𝑉 = (1, … , 𝑛) is the index set 

of all running instances with index 1 representing the source, i.e., the instance that trig-

gers the creation of the PING. Further, 𝐸(𝑡) ∈ ℝ𝑛×𝑛 is the triangular adjacency matrix 

that captures the similarity s𝑖,𝑗(𝑡) of two instances at a distinct point in time. The adja-

cency matrix relates to a distinct point in time as the similarity of instances may change 

over time when their execution is progressing. Each time a PING is created, the process 

instances receive a new index. As running instances terminate and new instances begin, 

𝐸(𝑡)’s dimensionality changes constantly. By assigning new indexes, we ensure that, 

for a distinct point in time, only running instances are considered and that no unneces-

sarily large data structures must be handled in real-time. 

 𝐸(𝑡) =  (

𝑠1,1(𝑡) ⋯ 𝑠1,𝑛(𝑡)

⋮ ⋱ ⋮
𝑠𝑛,1(𝑡) ⋯ 𝑠𝑛,𝑛(𝑡)

) , 𝑠𝑖,𝑗(𝑡) ∈ [0,1] (1) 

The adjacency matrix 𝐸(𝑡) is symmetric except for those elements that contain the 

source, i.e., s𝑖,𝑗(𝑡) = s𝑗,𝑖(𝑡) ∀𝑖, 𝑗 ∈ 𝑉 \ {1}. The source instance only propagates risk 

information, i.e., 𝑠𝑖,1(𝑡) = 0. The source needs not receive any risk information as one 

of its sensors has initially detected the risk that triggered the creation of the PING. For 

the same reason, all other instances do not propagate risk information to themselves, 

Instance 1
(source)

Instance 2

Risk detection 
without PRISM

Instance 1: 𝑡 = 2
Instance 2: 𝑡 = 3

t = 0 t=1 t = 2 t=3 …

Risk detection 
with PRISM

Instance 1: 𝑡 = 2
Instance 2: 𝑡 = 2

Unfulfillment
Sensor

Unfulfillment
Sensor



i.e., 𝑠𝑖,𝑖(𝑡) = 0. In all other cases, 𝑠𝑖,𝑗 = 0 if two instances are absolutely different and 

𝑠𝑖,𝑗 = 1 if the instances are perfectly equal according the similarity measure. 

In the PRISM approach, we calculate the similarity of instances in line with Song et 

al. [34], i.e., based on trace profiles (section 2.2). We build trace profiles based on ex-

plicit information (e.g., names of tasks) and on derived information (e.g., number of 

events in a trace). Each instance can be characterized by multiple profiles. A profile is 

an 𝑛-dimensional vector where 𝑛 indicates the number of items extracted from a log. A 

profile 𝑐𝑝,𝑖 refers to a vector 〈𝑎𝑖,1, 𝑎𝑖,2, … , 𝑎𝑖,𝑛〉, where 𝑎𝑖,𝑘 denotes the amount of item 

𝑘’s appearances in instance 𝑖 for profile 𝑝. For each profile 𝑝, the similarity of two in-

stances 𝑠𝑝,𝑖,𝑗(𝑡) is calculated as shown in Equation (2). 

𝑠𝑝,𝑖,𝑗(𝑡) = 1 −
𝑑(𝑐𝑝,𝑖(𝑡),𝑐𝑝,𝑗(𝑡))−𝑑min

𝑑max(𝑡)−𝑑min 
= 1 −

√∑ |𝑎𝑖,𝑘(𝑡)−𝑎𝑗,𝑘(𝑡)|
2𝑛

𝑘=1

max
𝑗∈𝑉

{√∑ |𝑎𝑖,𝑘(𝑡)−𝑎𝑗,𝑘(𝑡)|
2𝑛

𝑘=1 }

 (2) 

To determine the similarity of instances 𝑖 and 𝑗 for profile 𝑝, the respective normal-

ized distance is subtracted from 1. We assume 𝑑min to be 0 as instances can be identical. 

As an increasing value is needed to capture more similarity, we subtract the normalized 

distance from 1. In order to calculate the distance, it is possible to apply different dis-

tance measures (e.g., Euclidean, Hamming, or Jaccard) as shown by Song et al. [34]. 

We decided in favour of the Euclidean distance, which led to good results when used 

for trace clustering [34]. As the focus of this paper is not on the identification of the 

best similarity measures, other distance could have been used as well. We will get back 

to this issue in the critical reflection. To normalize the distance between two instances, 

an operation necessary to compare the distance between any pair of instances, we divide 

the distance of the respective trace vectors by the maximum distance available. 

To derive a single value that represents the similarity of two instances across all trace 

profiles in focus, we determine an overall similarity by calculating the weighted aver-

age of all profiles that relate to the involved instances. We thus integrate the similarity 

of all profiles based on their relative importance for the estimation of risks. In Equation 

(3), 𝑤𝑝 represent the weights of all profiles 𝑝 with ∑ 𝑤𝑝𝑝∈𝑃 = 1. 

𝑠𝑖,𝑗(𝑡) = ∑ 𝑤𝑝 ∙ 𝑠𝑝,𝑖,𝑗(𝑡)𝑝∈𝑃  (3) 

3.3 Risk Propagation Algorithm 

In case a sensor in a distinct instance detects a risk (i.e., the risk condition evaluates to 

true because the risk probability exceeds the threshold), the risk propagation algorithm 

cascades this information across all currently running instances. To do so, the risk prop-

agation algorithm builds on the PING and estimates the eventuation probability (i.e., 

the probability that the risk condition of the other instances also evaluates to true) of 

the detected risk in other instances using similarities, inspired by the signal/collect pro-

gramming model [41]. The risk propagation algorithm follows a two-phase approach, 

i.e., initial propagation and re-propagation. If a propagation is successful, we refer to 

the state of the respective instance as “at risk.” 

In the initial propagation phase, the source propagates the detected risk (i.e., a risk 

likelihood that exceeds a given threshold) to all other instances (see black solid lines in 



Fig. 3 a). The propagation accounts for the source’s similarity with other running in-

stances. Acting on the assumption of a proportional relationship between similarity and 

risk exposure, we estimate the risk of a receiving instance 𝑟𝑗(𝑡) at a distinct point in 

time according to Equation (4). 

 𝑟𝑗(𝑡) = {
𝑠𝑖,𝑗(𝑡) ∙ 𝑟𝑖(𝑡)

0
    

if 𝑠𝑖,𝑗(𝑡) ∙ 𝑟𝑖(𝑡) > 𝑇𝑅𝐸

else
 (4) 

If the risk multiplied with the similarity of the propagating instance (i.e., the source 

instance in the initial propagation phase) and the receiving instance exceeds the thresh-

old pre-defined for a sensor, the respective product is assigned to the receiving instance 

in terms of a signal/collect procedure. If the threshold is not exceeded, the product is 0. 

As instances typically are different and thus do not feature the same risk exposure, not 

all instances receive the same propagated risk. As we look at pairwise similarity, we do 

not cumulate received risk values in an instance during propagation, as this would result 

in an overestimation. In Fig. 3 and Fig. 4, the results of the initial propagation are writ-

ten into the table below the graph (even if the threshold is not exceeded) to illustrate 

the risk received in an instance. Fig. 3 a shows the situation when the source detects 

risk and propagates the risk value to all other running instances (see black solid lines). 

As not for all instances the propagated risk (i.e., similarity times risk of the source) 

exceeds the threshold, only instances 3 and 5 reach the “at risk” state (Fig. 3 b). 

 

Fig. 3. Visualization of the initial propagation phase 

For all instances whose product of risk and similarity exceeds the sensor’s threshold, 

the iterative re-propagation phase is triggered (Fig. 4). This phase and the iterative char-

acter are necessary as a process instance can get into the “at risk” state by receiving risk 

transitively propagated from the source (e.g., the similarity between the source and in-

stance 4 is rather low, but much higher between instances 5 and 4). As the risk is getting 

smaller with each re-propagation (i.e., 𝑠𝑖𝑗 < 1), we account for “paths” from the source 

to other nodes with a maximum length of 2. Using longer “paths” for risk propagation 

than assumed is possible and provides experts with the ability to customize the PRISM 

approach to their needs. 
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Thres-

hold
At Risk
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In the re-propagation phase, all instances that have been classified as “at risk” in the 

initial propagation or a previous re-propagation are sorted according to their risk expo-

sure. We start with the instance that has the highest risk exposure. From the initial prop-

agation (Fig. 3) to the re-propagation (Fig. 4), we can see that instance 5 with the high-

est received risk is considered first. The instance’s received risk is used for the first re-

propagation to all instances that have not yet been classified as “at risk”. As, for exam-

ple, the re-propagation from instance 5 to 4 exceeds the threshold of instance 4, instance 

4 is classified as “at risk” after the re-propagation (Fig. 4 d). The sorting of the instances 

“at risk” is not mandatory. However, starting with the highest risk, the algorithm termi-

nates faster. All instances that went into the “at risk” state due to the current re-propa-

gation are then added to the set of instances to be considered in the next re-propagation 

(e.g., instance 4 after the re-propagation of instance 5). Instances that already re-prop-

agated need not be considered further (e.g., instance 5). This iterative procedure con-

tinues until there are no more “at risk” instances that have not yet re-propagated or until 

the specified maximum number of re-propagations is reached.  

 

Fig. 4. Visualization of the re-propagation phase 

Although, in Fig. 4, instance 4 is added to the relevant instances for re-propagation, 

instance 3 still has the highest risk of the remaining “at risk” instances. Thus, the algo-

rithm starts the second re-propagation with instance 3 (Fig. 4 e). As no further instance 

exceeds the threshold based on the re-propagation, the algorithm terminates after the 

re-propagation of instance 4 (Fig. 4 f). As result, the PRISM approach classifies four 

out of five instances as “at risk”.  

4 Demonstration 

To demonstrate its effectiveness, we apply the PRISM approach to a process for a per-

sonal loan or overdraft application in the context of a real-world scenario from a Dutch 

financial institute. The corresponding log data was released as part of the BPI Challenge 
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held in conjunction with the 8th International Workshop on Business Process Intelli-

gence 2012 [42]. As a prerequisite for our demonstration, we implemented the PRISM 

approach as an extension of the workflow management system Camunda.1 Below, we 

first present the process model and data from process execution. After that, we outline 

how we operationalized the sensors and similarity measures. Finally, we compare the 

results of the PRISM approach with the sensor-based approach by Conforti et al. [13]. 

4.1 Demonstration Design and Data Set 

The application process for a personal loan or overdraft (Fig. 5) starts with the submis-

sion of an application. The financial institute may already decline the application at this 

point in time, a decision that will bring the process to a quick end. The financial institute 

may pre-accept the application for further processing. In this case, one of the financial 

institute’s employees first adds missing information until the application is completed. 

The employee then selects and creates an offer, sends the offer to the customer, and 

adds this information to the application. After that, the employee calls the customer 

periodically. After the customer made her decision, the application will be finally as-

sessed while adding still missing information. 

 

Fig. 5. Filtered process model of the personal loan and overdraft application process 

The corresponding log contains traces with events that cover a period of six months, 

i.e., from October 2011 to March 2012. Each line of the log corresponds to an executed 

task that relates to a distinct instance. The log also includes the resource that executed 

the task, the timestamp of task completion as well as the loan or overdraft amount re-

quested by the customer. As an example, Table 1 shows the trace of the process instance 

with the CaseID 175585 with a requested amount of 22,000 EUR. 

To improve its quality, we pre-processed the log via a two-phase filtering approach. 

In the first phase, we removed infrequent labels, applying the “Filter Log using Simple 

Heuristics” plugin of ProM with a boundary of 90%. In the second phase, we removed 

infrequent behavior from the log based on the approach by Conforti et al. [43]. The pre-

processed log contained 11 unique tasks and 9,350 instances resulting in 91,500 events. 

Having pre-processed the log, we extracted the process model used for our demonstra-

tion (Fig. 5).  

                                                           
1 http://www.camunda.com/. The authors are happy to provide the source code upon request. 

http://www.camunda.com/


Table 1. Log trace for CaseID 175585 

# Task Resource Complete_Timestamp 

1 START artificial 2011/10/08 14:50:02.113 

2 A_SUBMITTED 112 2011/10/08 14:50:02.113 

3 A_PARTLYSUBMITTED 112 2011/10/08 14:50:02.243 

4 A_PREACCEPTED 112 2011/10/08 14:50:42.639 

5 O_SELECTED 11000 2011/10/08 14:56:37.300 

6 O_CREATED 11000 2011/10/08 14:56:39.224 

7 O_SENT 11000 2011/10/08 14:56:39.271 

8 W_Filling in information for the application 11000 2011/10/08 14:56:41.605 

9 W_Calling after sent offers 11000 2011/10/08 14:57:16.346 

… W_Calling after sent offers … … 

18 W_Calling after sent offers 11049 2011/10/24 12:20:18.377 

19 W_Assessing the application 10629 2011/10/27 13:35:15.895 

20 W_Calling to add missing information to the application 10939 2011/10/27 18:42:05.333 

21 W_Assessing the application 10629 2011/10/28 08:38:08.642 

22 END Artificial 2011/10/28 08:38:08.643 

In our demonstration, we measured how often the PRISM approach was capable of 

predicting the eventuation of a risk measured by a sensor. To substantiate the advantage 

gained by applying PRISM, we determined how long before the risk’s eventuation the 

prediction was made. Additionally, we measured how often PRISM was unable to pre-

dict a risk detected by a sensor or produced an erroneous prediction where no risk has 

been detected before. To perform the demonstration and to ensure its replicability, we 

replayed the execution of process instances according to the log data.  

4.2 Operationalization for PRISM Demonstration 

Before starting the replay, we implemented one sensor in the application process. This 

sensor monitors the unfulfillment risk as introduced in Conforti et al. [13]. This risk 

occurs if an instance executes a task too often, a situation that occurs in loops. To avoid 

slowdowns and livelocks during execution, a task is assigned a maximum amount of 

executions per instance (𝑀𝐴𝐸), which may be defined as part of an internal regulation 

or service level agreement. In our demonstration, we monitor the unfulfillment risk with 

respect to the “W_Calling after sent offers” task with 𝑀𝐴𝐸 = 10. As the process log 

did not come with any additional information on a defined maximum time or maximum 

amount of executions, we had to estimate a sensible value. We expected that not more 

than 10% of the instances are faulty and set 𝑀𝐴𝐸 = 10, as it represents the 92% quan-

tile of the 𝑀𝐴𝐸 distribution contained in the log. The instance from Table 1, for exam-

ple, reached this amount as the task “W_Calling after sent offers” is executed 10 times. 

The unfulfillment risk sensor monitors the risk according to the risk condition shown 

in Equation (5), whenever an instance executes the “W_Calling after sent offers” task. 

 min {
#𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠≥𝑀𝐴𝐸

#𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠≥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑎𝑠𝑘 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛
; 1} > 𝑇𝑅𝐸 (5) 

Accordingly, we divide the amount of instances that executed the task at least as 

often as the defined 𝑀𝐴𝐸 by the amount of instances that executed the task at least as 

often as the instance that triggered the sensor calculation. In case an instance already 

executed the task more often than the defined 𝑀𝐴𝐸, the left value of the risk condition 

must not exceed 1, as it reflects the probability that the instance exceeds the specified 



maximum amount of executions. Whenever the probability exceeds the defined thresh-

old 𝑇𝑅𝐸, the PING is created and the risk propagation algorithm is triggered. We chose 

𝑇𝑅𝐸 = 0.6 to capture a risk-neutral setting. The threshold can also be adapted to reflect 

more risk-averse or risk-seeking settings. As the sensor calculates the risk based on the 

already executed instances of a process, we had to ensure that a sufficient amount of 

instances has already been executed before the first risk propagation is triggered. We 

thus started 40 instances of the log in order not to perform the sensor’s calculation on 

an empty database. This amount of instances shaped up as sufficient in some scenarios. 

To derive the similarity values used for risk propagation, we used two profiles. The 

first profile builds on case attributes from the log, the second considers the amount of 

executed tasks of a distinct instance. However, the log only offers two attributes, i.e., 

the requested amount of money and resource executing a task, whereby the resource is 

missing for many tasks. We decided to calculate the distance vector of the first profile 

with just one element, i.e., the difference of the requested amounts of money. For the 

second profile, we used the amount of executions per task. For both profiles, the max-

imum distance vector was determined based on instances in the snapshot (e.g., instances 

that were currently running when the risk was detected, as explained for the PING in 

section 3.2). The maximum distance vector we choose for normalizing the distance 

values must not exceed the average distance from the snapshot by 80%. We decided for 

this assumption to minimize the effect of outliers, which would cause many false posi-

tives. To further reduce the number of false positive risk propagations, we limited the 

amount of instances taken into consideration for propagation. We reduced the running 

instances by those who have already passed the task our sensor is attached to. Instances 

that proceeded to the task “W_Assessing the application” cannot be faulty anymore. At 

least the sensor related to their instance would have had to indicate potential risk. 

The calculation of both profiles is performed according to Equation (2). We take the 

profiles’ result and their weights in order to derive a similarity for two distinct instances 

(Equation 3). As the log contained almost no case attributes, we selected the task profile 

as the leading profile. We thus assigned a weight of 0.6 to the task profile and 0.4 to 

the attribute profile as shown in Equation (6). 

 𝑠𝑖,𝑗(𝑡) = ∑ 𝑤𝑝 ∙ 𝑠𝑝,𝑖,𝑗(𝑡)𝑝∈𝑃 = 0.4 ∙ 𝑠attribute,𝑖,𝑗(𝑡) + 0.6 ∙ 𝑠task,𝑖,𝑗(𝑡) (6) 

4.3 Results of the Replay and Discussion 

To show a successful implementation and validate the PRISM approach, we selected 

instances that started between October 1st and 11th 2011. This set of instances captures 

an average workload per week from the process log, including a sufficiently large num-

ber of instances to train the PRISM approach. As declined loan requests would lead to 

negligible similarity values and receive no risk propagation, we only looked at instances 

with accepted loan requests. With the replay of the resulting 241 instances, we gained 

the results as illustrated in Table 2.  

In this setting, the PRISM approach predicted with an accuracy of 86.72% (209 out 

of 241 instances). In the used log data, the sensor detected a risk for 14 instances. Out 

of these instances, 13 where correctly identified as being “at risk” before the respective 



instances’ own sensors detected the risk. The instance with the missing prediction ap-

peared due to propagation algorithm. The algorithm triggers the risk propagation upon 

the detection of risk in a sensor. Thus, the first instance that runs into a risk and triggers 

the first propagation cannot receive any information from an earlier propagation. 

When we look into details, the time saved by the PRISM approaches averages 4 days 

18 hours compared to a risk detection without risk propagation among similar instances. 

The average execution time of the covered 241 instances amounted to 65 days 12 hours. 

For our example trace (i.e., CaseID 175585) in Table 1, the unfulfillment risk was iden-

tified in task 16 with the 8th execution of task “W_Calling after sent offers” and caused 

a time advantage of 5 days 20 hours. 

Table 2. Contingency table for predicting risk with PRISM 

 Sensor detected risk Sensor detected no risk 

PRISM risk predicted 13/14 = 92.86% 31/227 = 13.66% 

PRISM no risk predicted 1/14 = 7.14% 196/227 = 86.34% 

Finally, we critically reflect on the results of the demonstration, as we made some 

assumptions when operationalizing the PRISM approach (e.g., similarity measure, nor-

malization of the distance vectors). The different profiles of a process allow for differ-

ent perspectives on similarity and provide high flexibility. The process log we used for 

the replay, however, only contained very few attributes we could use for building pro-

files. Thus, it needs to be checked how the availability of more attributes influences the 

demonstration results. Further, the relation of missing to false predictions is influenced 

by the risk conditions, thresholds, and the maximum number of re-propagations. These 

properties can be adapted according to a process manager’s risk attitude. Nevertheless, 

we were able to demonstrate the effectiveness of the PRISM approach as we gained 

good results based on limited information. In addition, we only analyzed instances that 

started in a limited time period. Although this set of instances represented an average 

work week, it covers only a subset of the log data. We deliberately restricted the demon-

stration to a smaller subset to better understand what is happing during risk propagation. 

Thus, a next step would be to further develop the prototype and to apply the PRISM 

approach to the entire log.  

5 Conclusion and Critical Discussion 

In this paper, we proposed the predictive risk monitoring (PRISM) approach that auto-

matically propagates risk information, detected by risk sensors, across similar instances 

of the same process in real-time. On the assumption that similar process instances have 

a similar risk exposure, the PRISM approach uses a similarity-weighted process in-

stance graph (PING) that can be interpreted as a snapshot of all currently running in-

stances. The PING virtually links all currently running instances and uses the similarity 

of these instances as edge weights. Based on the PING, a risk propagation algorithm 

then determines whether and how strongly a detected risk influences other instances. 

The PRISM approach intends to detect risks earlier than approaches without risk prop-

agation. In the context of a real-world scenario, we demonstrated that the similarity 



assumption holds true and that the PRISM approach is indeed able to detect risks earlier 

than the approach of Conforti et al. [13]. 

Although we were able to demonstrate the effectiveness of the PRISM approach and 

the feasibility of the underlying assumptions based on real-world data, the approach is 

beset with limitations that stimulate future research. First, the PRISM approach is based 

on a distinct similarity measure as well as on the assumption of a proportional relation 

between similarity and risk exposure. Future research should analyze whether other 

similarity measures and other relation types help achieve better risk prediction results. 

Second, it is time-consuming to parameterize the PRISM approach. Currently, the pa-

rameterization needs to be strongly geared toward the properties of the process log at 

hand. Future research should explore into methods that help parameterize the PRISM 

approach. Third, the information we use as input for the PRISM approach grounds on 

risk information triggered by risk sensors. We do not consider other input than log data. 

It might be useful to account for information from outside the process such as the con-

text in which the process is executed (e.g., market fluctuations) or organizational risks 

(e.g., dependencies on third parties) to enhance predictive risk detection. Ideas may be 

derived from risk monitoring approaches applied in other domains as well as from more 

sophisticated propagation algorithms (e.g., belief propagation). This can help overcome 

current shortcomings of the PRISM approach (e.g., the re-propagation sequence and 

the termination rule). Likewise, the PRISM approach would benefit from further eval-

uation by means of sensitivity analyses, robustness tests, and case studies. Case studies 

would also help gain experience with estimating the needed parameters. 
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